The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Applications: The Congruence Subgroups and the New Leaky Tori
4.1. The Congruence Subgroup of
4.1.1. A New Gutzwiller Leaky Tori
4.1.2. A New Leaky Torus from the Desymmetrized Triangle Group
4.1.3. A New Leaky Torus from the ’Square-Box’ Congruence Subgroup
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bykovskii, V.A. On a summation formula in the spectral theory of automorphic functions and its applications in analytic number theory. Dokl. Akad. Nauk SSSR 1982, 264, 275–277. [Google Scholar]
- Hejhal, D.A. The Selberg Trace Formula for PSL(2,R); Springer Nature: Hemsbach, Germany, 1983; Volume 2. [Google Scholar]
- Vinogradov, A.I.; Takhtadzhyan, L.A. The Zeta function of the additive divisor problem ans spectral decomposition of the automorphic laplacian. J. Sov. Math. 1987, 76, 57–78. [Google Scholar] [CrossRef]
- Lecian, O.M. Summation of the Fourier coe cients of the non-holomorphic Eisenstein cusp series of the PSL(2, Z) group. Int. J. Math. Comput. Res. 2023, 11, 3190–3194. [Google Scholar] [CrossRef]
- Gutzwiller, M.C. Stochastic behavior in quantum scattering. Phys. D Nonlin. Phen. 1983, 7, 341–355. [Google Scholar] [CrossRef]
- Terras, A. Harmonic Analysis on Symmetric Spaces and Applications; Springer: New York, NY, USA, 1985; Volume 1. [Google Scholar]
- Shamsuddin, N.S.; Zainuddin, H.; Chan, C.T. Computing Maass cusp form on general hyperbolic torus. AIP Conf. Proc. 2017, 1795, 020014-1–020014-8. [Google Scholar]
- Chan, C.T.; Zainuddin, H.; Molladavoudi, S. Computation of Quantum Bound States on a Singly Punctured Two-Torus. Chin. Phys. Lett. 2013, 30, 010304-1–010304-4. [Google Scholar]
- Lecian, O.M. The Desymmetrized PSL(2,Z) Group, The ’Square-Box’ Congruence Subgroup, the congruence subgroups and leaky tori. Int. J. Math. Comput. Res. 2023, 11, 3195–3200. [Google Scholar] [CrossRef]
- Gannon, T. Monstrous Moonshine: The First Twenty-Five Years; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Kuznetsov, N.V. Convolution of Fourier coefficients of Eisenstein-Maass series. J. Sov. Math. 1985, 29, 1131–1159. [Google Scholar] [CrossRef]
- McShane, G.; Parlier, H. Simple closed geodesics of equal length on a torus. In Geometry of Riemann Surfaces; Gardiner, F.P., González-Diez, G., Kourouniotis, C., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 268–282. [Google Scholar]
- Adler, R.; Tresser, C.; Worfolk, P.A. Topological conjugacy of linear endomorphisms of the 2-torus. Trans. Am. Math. Soc. 1997, 349, 1633–1652. [Google Scholar] [CrossRef]
- Anosov, D.V.; Klimenko, A.V.; Kolutsky, G. On the hyperbolic automorphisms of the 2-torus and their Markov partitions. arXiv 2008, arXiv:0810.5269. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecian, O.M. The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups. Comput. Sci. Math. Forum 2023, 7, 49. https://doi.org/10.3390/IOCMA2023-14428
Lecian OM. The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups. Computer Sciences & Mathematics Forum. 2023; 7(1):49. https://doi.org/10.3390/IOCMA2023-14428
Chicago/Turabian StyleLecian, Orchidea Maria. 2023. "The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups" Computer Sciences & Mathematics Forum 7, no. 1: 49. https://doi.org/10.3390/IOCMA2023-14428
APA StyleLecian, O. M. (2023). The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups. Computer Sciences & Mathematics Forum, 7(1), 49. https://doi.org/10.3390/IOCMA2023-14428