Next Article in Journal
The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups
Previous Article in Journal
Gauss-Seidel and Sor Methods for Solving Intuitionistic Fuzzy System of Linear Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Proceeding Paper

Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations †

Department of Mathematics, Bankura University, Bankura 722155, West Bengal, India
*
Author to whom correspondence should be addressed.
Presented at the 1st International Online Conference on Mathematics and Applications, 1–15 May 2023; Available online: https://iocma2023.sciforum.net/.
Comput. Sci. Math. Forum 2023, 7(1), 48; https://doi.org/10.3390/IOCMA2023-14406
Published: 28 April 2023

Abstract

:
In this paper, we investigate an intuitionistic fuzzy Poisson equation with uncertain parameters, considering the parameters as intuitionistic fuzzy numbers. We apply a finite difference method to solve the ‘Intuitionistic fuzzy Poisson equation’. The continuity of the membership and non-membership functions (which imply the continuity of the hesitancy function) is used to obtain qualitative properties on regular α -cut and β -cut of the intuitionistic fuzzy solution. The fuzzification of the deterministic α -cut and β -cut solutions obtained lead to the intuitionistic fuzzy solution. Finally, an example is presented to illustrate the proposed methodology, as well as to show a graphical representation of its corresponding intuitionistic fuzzy solution.

1. Introduction

One of the fruitful ways of modelling uncertainty and imprecision in particular quantities for certain real-life problems, is Intuitionistic Fuzzy Partial Differential Equations (IFPDEs). IFPDEs have essential applications in diverse fields, such as physics, biology, chemistry, and engineering. We propose a method for the approximate solution of IFPDE using a Finite Difference Method. In [1], J. Buckley and T. Feuring introduced a method for the solution of the fuzzy partial differential equation. In [2], T. Allahvironloo used a numerical method to solve the Fuzzy Partial differential equation that was based on the Seikala derivative. C. Samuel and V. Stefen used a numerical method to solve elliptic FPDE using a polynomial Galerkin approximation. In [3], Man et al. applied the finite difference method to solve an intuitionistic fuzzy heat equation. A. Kermani et al. Numerical methods for fuzzy linear partial differential equations applied by Kermani et al. [4]. An intuitionistic fuzzy set introduced by K.T. Atanassov [5,6]. Intuitionistic fuzzy number and its arithmetic operations discussed by [7,8]. An intuitionistic fuzzy set is an extension of the fuzzy set defined in a domain of discourse. We may obtain better results using IFPDEs rather than FPDEs.
This paper presents a new approach to finding the numerical solution of the intuitionistic fuzzy elliptic equation. We solve the Poisson equation using the finite difference method with intuitionistic fuzzy parameters.

2. Materials and Methods

In the following we consider the Poisson equation
( D x 2 + D y 2 ) U ˜ = F ˜ ( x , y , K ˜ ) ,
Let us consider U ˜ and F ˜ to be a fuzzy function of the independent crisp variables x and y. We define the domain
R = [ ( x , y ) : ( x , y ) I 1 X I 2 ]
A( α , β )-cuts of U ˜ ( x , y ) and its parametric form will be
U ˜ ( x , y ) [ α , β ] = < [ U ̲ ( x , y ; α ) , U ¯ ( x , y ; α ) ] , [ U ̲ ( x , y ; β ) , U ¯ ( x , y ; β ) ] > .
We suppose that U ̲ ( x , y ; α ) , U ¯ ( x , y ; α ) ) , U ̲ ( x , y ; β ) and U ¯ ( x , y ; β ) ) have continuous partial derivatives with respect to x and y, therefore ( D x 2 + D y 2 ) U ̲ ( x , y ; α ) , ( D x 2 + D y 2 ) U ¯ ( x , y ; α ) ) , ( D x 2 + D y 2 ) U ̲ ( x , y ; β ) and ( D x 2 + D y 2 ) U ¯ ( x , y ; β ) ) are continuous for all ( x , y ) R , for all α [ 0 , 1 ] , for all β [ 0 , 1 ] .
Equation (1) can be decomposed as
( D x 2 ) U ̲ + ( D y 2 ) U ̲ = F ̲ ( x , y , K ˜ ) ,
( D x 2 ) U ¯ + ( D y 2 ) U ¯ = F ¯ ( x , y , K ˜ ) ,
( D x 2 ) U ̲ + ( D y 2 ) U ̲ = F ̲ ( x , y , K ˜ ) ,
( D x 2 ) U ¯ + ( D y 2 ) U ¯ = F ¯ ( x , y , K ˜ ) ,
for all ( x , y ) I 1 × I 2 , for all α [ 0 , 1 ] and for all β [ 0 , 1 ] .
We subdivide the intervals I 1 = [ 0 , 1 ] , I 2 = [ 0 , 1 ] into N equal subintervals of length h = 1 N then the points x i = i h , i = 0 , 1 , 2 , , N 1 and y j = j h , j = 0 , 1 , 2 , , N 1 .
Csmf 07 00048 i001
Denote the value of U ˜ at the representative mesh point P ( i h , j h ) by
U P ˜ = U ˜ ( i h , j h ) = U ˜ i , j
and also denote the parametric form of intuitionistic fuzzy number U ˜ i , j , involving the parameters α and β , as
U ˜ i , j = < [ u ̲ i , j ( α ) , u ¯ i , j ( α ) ] , [ u ̲ i , j ( β ) , u ¯ i , j ( β ) ] > .
Then, we have
( D x 2 ) U ˜ ( x , y ) = < [ D x 2 U ̲ ( x , y ; α ) , D x 2 U ¯ ( x , y ; α ) ] , [ D x 2 U ̲ ( x , y ; β ) , D x 2 U ¯ ( x , y ; β ) ] > ,
( D y 2 ) U ˜ ( x , y ) = < [ D y 2 U ̲ ( x , y ; α ) , D y 2 U ¯ ( x , y ; α ) ] , [ D y 2 U ̲ ( x , y ; β ) , D y 2 U ¯ ( x , y ; β ) ] > ,
Following [2], using Taylor’s theorem and definition of standard difference formula we obtain
D x 2 U ̲ ( x , y ; α ) | i , j u ̲ i + 1 , j 2 u ̲ i , j + u ̲ i 1 , j h 2 ,
D x 2 U ¯ ( x , y ; α ) | i , j u ¯ i + 1 , j 2 u ¯ i , j + u ¯ i 1 , j h 2 ,
D x 2 U ̲ ( x , y ; β ) | i , j u ̲ i + 1 , j 2 u ̲ i , j + u ̲ i 1 , j h 2 ,
D x 2 U ¯ ( x , y ; β ) | i , j u ¯ i + 1 , j 2 u ¯ i , j + u ¯ i 1 , j h 2 ,
with a leading error of O ( h 2 ) . Similarly, using the notation of forward difference approximation for ( D y 2 ) U ˜ at P, we have
D y 2 U ̲ ( x , y ; α ) | i , j u ̲ i , j + 1 2 u ̲ i , j + u ̲ i , j 1 h 2 ,
D y 2 U ¯ ( x , y ; α ) | i , j u ¯ i , j + 1 2 u ¯ i , j + u ¯ i , j 1 h 2 ,
D y 2 U ̲ ( x , y ; β ) | i , j u ̲ i , j + 1 2 u ̲ i , j + u ̲ i , j 1 h 2 ,
D y 2 U ¯ ( x , y ; β ) | i , j u ¯ i , j + 1 2 u ¯ i , j + u ¯ i , j 1 h 2 ,
with a leading error of O ( h 2 ) .
Using (12)–(19) the finite difference scheme for Poisson equation reads as
u ̲ i , j + 1 2 u ̲ i , j + u ̲ i , j 1 h 2 + u ̲ i + 1 , j 2 u ̲ i , j + u ̲ i 1 , j h 2 = F ̲ ( x , y , K ˜ ) ,
u ¯ i , j + 1 2 u ¯ i , j + u ¯ i , j 1 h 2 + u ¯ i + 1 , j 2 u ¯ i , j + u ¯ i 1 , j h 2 = F ¯ ( x , y , K ˜ ) ,
u ̲ i , j + 1 2 u ̲ i , j + u ̲ i , j 1 h 2 + u ̲ i + 1 , j 2 u ̲ i , j + u ̲ i 1 , j h 2 = F ̲ ( x , y , K ˜ ) ,
u ¯ i , j + 1 2 u ¯ i , j + u ¯ i , j 1 h 2 + u ¯ i + 1 , j 2 u ¯ i , j + u ¯ i 1 , j h 2 = F ¯ ( x , y , K ˜ ) .
This can be written as
u ̲ i , j = 1 4 [ u ̲ i + 1 , j + u ̲ i 1 , j + u ̲ i , j + 1 + u ̲ i , j 1 h 2 F ̲ ( x , y , K ˜ ) ]
u ¯ i , j = 1 4 [ u ¯ i + 1 , j + u ¯ i 1 , j + u ¯ i , j + 1 + u ¯ i , j 1 h 2 F ¯ ( x , y , K ˜ ) ]
u ̲ i , j = 1 4 [ u ̲ i + 1 , j + u ̲ i 1 , j + u ̲ i , j + 1 + u ̲ i , j 1 h 2 F ̲ ( x , y , K ˜ ) ]
u ¯ i , j = 1 4 [ u ¯ i + 1 , j + u ¯ i 1 , j + u ¯ i , j + 1 + u ¯ i , j 1 h 2 F ¯ ( x , y , K ˜ ) ]

3. Results

Consider the fuzzy Poisson’s equation. This example can be found in [2]
2 U ˜ x 2 ( x , y ) + 2 U ˜ y 2 ( x , y ) = F ˜ ( x , y , K ˜ ) , 0 < x < 2 , 0 < y < 1 ,
where
F ˜ ( x , y , K ˜ ) = k ˜ x e y ,
and
k ˜ [ α , β ] = < [ k ̲ ( α ) , k ¯ ( α ) ] , [ k ̲ ( β ) , k ¯ ( β ) ] > = < [ 0.75 + 0.25 α , 1.25 0.25 α ] , [ 1 0.5 β , 1 + 0.5 β ] > .
with the boundary conditions
U ˜ ( 0 , y ) = 0 , U ˜ ( 2 , y ) = 2 k ˜ e y , 0 y 1 ,
U ˜ ( x , 0 ) = k ˜ x , U ˜ ( x , 1 ) = k ˜ e x , 0 x 2 .
The exact solutions for
2 U ̲ x 2 ( x , y ; α ) + 2 U ̲ y 2 ( x , y ; α ) = k ̲ ( α ) x e y , 0 < x < 2 , 0 < y < 1 ,
2 U ¯ x 2 ( x , y ; α ) + 2 U ¯ y 2 ( x , y ; α ) = k ¯ ( α ) x e y , 0 < x < 2 , 0 < y < 1 ,
2 U ̲ x 2 ( x , y ; β ) + 2 U ̲ y 2 ( x , y ; β ) = k ̲ ( β ) x e y , 0 < x < 2 , 0 < y < 1 ,
2 U ¯ x 2 ( x , y ; β ) + 2 U ¯ y 2 ( x , y ; β ) = k ¯ ( β ) x e y , 0 < x < 2 , 0 < y < 1 ,
are, respectively,
U ̲ ( x , y ; α ) = k ̲ ( α ) x e y ,
U ¯ ( x , y ; α ) = k ¯ ( α ) x e y ,
U ̲ ( x , y ; β ) = k ̲ ( β ) x e y ,
U ¯ ( x , y ; β ) = k ¯ ( β ) x e y ,

4. Discussion

We have used Equations (24)–(27) to approximate the exact solutions with h = 0.025 and k = 0.01 . Figure 1 shows the approximate and exact solution at the point ( 0.5 , 0.25 ) for each α ( 0 , 1 ) .

5. Conclusions

The intuitionistic fuzzy partial differential equation can be applied for modelling in physics, engineering, and mechanical system. In this paper, we have developed a finite difference method to solve the intuitionistic fuzzy Poisson equation. Future work may focus on intuitionistic fuzzy partial differential equations to more realistic applications from practice.

Author Contributions

All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Enquiries about data availability should be directed to the authors.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Buckly, J.J.; Feuring, T. Fuzzy differential equations. Fuzzy Sets Syst. 2000, 100, 43–54. [Google Scholar] [CrossRef]
  2. Allahviranloo, T. Difference methods for fuzzy partial differential equations. Comput. Methods Appl. Math. 2002, 2, 233–242. [Google Scholar] [CrossRef]
  3. Man, S.; Saw, B.C.; Hazra, S.B. An explicit method for solving intuitionistic fuzzy heat equation. Adv. Fuzzy Math. (AFM) 2021, 16, 27–39. [Google Scholar]
  4. Kermani, A.; Saburi, F. Numerical methods for fuzzy linear partial differential equations. Appl. Math. Comput. 2007, 27, 1299–1309. [Google Scholar]
  5. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  6. Atanassov, K.T. Ideas for Intuitionistic Fuzzy Sets, Equations, Inequations and Optimization. Notes Intuitionistic Fuzzy Sets 1995, 1, 17–24. [Google Scholar]
  7. Mahapatra, G.S.; Roy, T.K. Intuitionistic fuzzy number and its arithmetic operation with appilication on system failure. J. Uncertain Syst. 2013, 7, 92–107. [Google Scholar]
  8. Seikh, M.R.; Nayak, P.K.; Pal, M. Notes on triangular intuitionistic fuzzy numbers. Int. J. Math. Oper. Res. 2013, 5, 446–465. [Google Scholar] [CrossRef]
Figure 1. The intuitionistic fuzzy solution of Poisson equation.
Figure 1. The intuitionistic fuzzy solution of Poisson equation.
Csmf 07 00048 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Man, S.; Saw, B.C.; Bairagi, A.; Hazra, S.B. Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations. Comput. Sci. Math. Forum 2023, 7, 48. https://doi.org/10.3390/IOCMA2023-14406

AMA Style

Man S, Saw BC, Bairagi A, Hazra SB. Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations. Computer Sciences & Mathematics Forum. 2023; 7(1):48. https://doi.org/10.3390/IOCMA2023-14406

Chicago/Turabian Style

Man, Sushanta, Bidhan Chandra Saw, Anupama Bairagi, and Subhendu Bikash Hazra. 2023. "Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations" Computer Sciences & Mathematics Forum 7, no. 1: 48. https://doi.org/10.3390/IOCMA2023-14406

APA Style

Man, S., Saw, B. C., Bairagi, A., & Hazra, S. B. (2023). Finite Difference Method for Intuitionistic Fuzzy Partial Differential Equations. Computer Sciences & Mathematics Forum, 7(1), 48. https://doi.org/10.3390/IOCMA2023-14406

Article Metrics

Back to TopTop