Next Article in Journal
A Testing Coverage Based SRGM Subject to the Uncertainty of the Operating Environment
Previous Article in Journal
Spectral Classification of Quasar Subject to Redshift: A Statistical Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Proceeding Paper

Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function †

Division of Mathematics, School of Advanced Sciences & Languages, VIT Bhopal University, Kothrikalan, Sehore 466114, India
Presented at the 1st International Online Conference on Mathematics and Applications, 1–15 May 2023; Available online: https://iocma2023.sciforum.net/.
Comput. Sci. Math. Forum 2023, 7(1), 42; https://doi.org/10.3390/IOCMA2023-14393
Published: 28 April 2023

Abstract

:
In this paper, we consider a generalized Mittag-Leffler (ML)-type function and establish several integral formulas involving Jacobi and related transforms. We also establish some of the composition of generalized fractional derivative formulas associated with the generalized Mittag-Leffler (ML)-type function. Additionally, certain special cases of generalized fractional derivative formulas involving the Mittag-Leffler (ML)-type function are corollarily presented.

1. Introduction

In 1903, Gösta Mittag-Leffler [1] introduced the Mittag-Leffler (ML) function, which is represented by
E ν ( z ) = k = 0 z k Γ ( ν k + 1 ) , ( ν ) > 0
Wiman [2] generalized the Mittag-Leffler (ML) function (1) in 1905 and introduced the following definition:
E ν , κ ( z ) = k = 0 z k Γ ( ν k + κ ) ,
where ν , κ C with ( ν ) > 0 , ( κ ) > 0 .
Later, in 1971, Prabhakar [3] introduced the three-parameter Mittag-Leffler (ML) function, which can be defined as,
E ν , κ γ ( z ) = k = 0 ( γ ) k Γ ( ν k + κ ) z k k ! ,
where κ , ν , γ C with ( ν ) > 0 , ( κ ) > 0 , ( γ ) > 0 .
Wright [4] introduced an extension of the generalized hypergeometric function called the Fox–Wright function, which can be expressed in the following form:
f Ψ g ( z ) = f Ψ g ( m a , M a ) 1 , f ( n b , N b ) 1 , g z = k = 0 Γ ( m 1 + M 1 k ) Γ ( m f + M f k ) Γ ( n 1 + N 1 k ) Γ ( n g + N g k ) z k k ! ,
where m a , n b C , a = 1 , , f ; b = 1 , , g , and the coefficients M 1 , , M f R + and N 1 , , N g R + satisfying the condition
b = 1 g N b a = 1 f M a > 1 .
In particular, when M a = N b = 1 , (4) reduces to
f Ψ g ( m 1 , 1 ) , , ( m f , 1 ) ( n 1 , 1 ) , , ( n g , 1 ) z = a = 1 f Γ ( m a ) b = 1 g Γ ( n b ) f F g m 1 , , m f n 1 , , n g z ,
where f F g ( · ) is the well-known generalized hypergeometric function [5].
In this work, we define a Mittag-Leffler (ML)-type confluent hypergeometric function introduced by Ghanim and Al-Janaby [6]:
M ν , κ η , γ ( z ) = k = 0 Γ ( κ ) Γ ( η k + γ ) Γ ( γ ) Γ ( ν k + κ ) z k k ! ,
where κ , η , ν , γ C , such that ( ν ) > 0 . It is worth pointing out that series representation of Equation (7) returns a variety of connections with special functions, including a confluent hypergeometric function and generalized Mittag-Leffler (ML) functions (1)–(3).

2. Jacobi and Related Integral Transforms

The Jacobi integral transform [7] (p. 501) of a function f ( r ) can be represented as follows:
J ( λ , σ ) f ( r ) ; n = 1 1 ( 1 r ) λ ( 1 + r ) σ P n ( λ , σ ) ( r ) f ( r ) d r ,
where min ( λ ) , ( σ ) > 1 ; n N 0 , r C and provided that the integral on the right-hand side in (8) exists. Here, P n ( λ , σ ) ( r ) is the classical orthogonal Jacobi polynomial [8] (Chapter 10) defined by
P n ( λ , σ ) ( r ) = ( 1 ) n P n ( σ , λ ) ( r ) = λ + n n 2 F 1 n , λ + σ + n + 1 λ + 1 1 r 2 .
The Jacobi polynomials P n ( λ , σ ) ( r ) contain, as their special cases, other classical orthogonal polynomials, such as the Gegenbauer polynomials C n c ( r ) , the Legendre polynomials P n ( r ) , and the Tchebycheff polynomials T n ( r ) and U n ( r ) of the first and second kind (see, [9]). The Legendre polynomials P n ( r ) and the Gegenbauer polynomials C n c ( r ) have the following relationships:
C n c ( r ) = c + n 1 2 n 1 2 c + n 1 n J c 1 2 , c 1 2 [ f ( r ) ; n ]
and
P n ( r ) = C n 1 2 ( r ) = P n ( 0 , 0 ) ( r ) ,
respectively. Thus, by applying the relationships in (10) and (11) and ignoring the constant binomial coefficients present in (10), the parameters λ and σ in (8) earlier can be suitably specialized to define the corresponding Gegenbauer transform G ( c ) [ f ( r ) ; n ] and the Legendre transform L [ f ( r ) ; n ] , as follows:
G ( c ) [ f ( r ) ; n ] = c + n 1 2 n 1 2 c + n 1 n J c 1 2 , c 1 2 [ f ( r ) ; n ]
= 1 1 ( 1 r 2 ) c 1 2 C n c ( r ) f ( r ) d r , ( c ) > 1 2 ; n N 0 ,
and
L [ f ( r ) ; n ] = G 1 2 [ f ( r ) ; n ] = 1 1 P n ( r ) f ( r ) d r , ( n N 0 ) .
Lemma 1. 
The Jacobi transform of the power function r ω 1 is given by [10]
1 1 ( 1 r ) δ 1 1 ( 1 + r ) δ 2 1 P n ( λ , σ ) ( r ) r ω 1 d r = 2 δ 1 + δ 2 1 λ + n n B δ 1 , δ 2 × F 1 : 1 , 0 1 : 2 , 1 δ 1 : n , λ + σ + n + 1 ; 1 ω δ 1 + δ 2 : λ + 1 ; 1 , 2 ,
where min ( δ 1 ) , ( δ 2 ) > 0 ; ω , r C ; n N 0 and F l : m , n p : q , r ( · ) is the familiar Kampé de Fériet function [11].
Theorem 1. 
Under the assumptions defined in (7), the Jacobi transform of the Mittag-Leffler (ML)-type confluent hypergeometric function (7) can be expressed as
J ( λ , σ ) r ω 1 M ν , κ η , γ ( u r ) ; n = 2 λ + σ + 1 λ + n n B λ + 1 , σ + 1 k = 0 Γ ( κ ) Γ ( η k + γ ) Γ ( γ ) Γ ( ν k + κ ) × F 1 : 1 , 0 1 : 2 , 1 λ + 1 : n , λ + σ + n + 1 ; 1 ω k λ + σ + 2 : λ + 1 ; 1 , 2 u k k ! ,
where ω C ; n N 0 and min ( λ ) , ( σ ) > 1 , | u | < 1 .
Proof. 
To prove Theorem 1, we first apply Jacobi transform (8) in conjunction with (7). Upon reversing the order of summation and integration and making use of Lemma 1, this proves the Theorem 1. □
Corollary 1. 
If the hypothesis of the Theorem 1 is true, and substituting λ = σ = c 1 2 , the following Gegenbauer transform formula is valid:
G ( c ) r ω 1 M ν , κ η , γ ( u r ) ; n = 2 2 c 2 c + n 1 n B c + 1 2 , c + 1 2 k = 0 Γ ( κ ) Γ ( η k + γ ) Γ ( γ ) Γ ( ν k + κ ) × F 1 : 1 , 0 1 : 2 , 1 c + 1 2 : n , 2 c + n ; 1 ω k 2 c + 1 : c + 1 2 ; 1 , 2 u k k ! ,
where ω C ; n N 0 , ( c ) > 1 2 , | u | < 1 .
Corollary 2. 
If the hypothesis of the Theorem 1 is true, and substituting λ = σ = 0 or c = 1 2 , the following Legendre transform formula is valid:
L r ω 1 M ν , κ η , γ ( u r ) ; n = 2 k = 0 Γ ( κ ) Γ ( η k + γ ) Γ ( γ ) Γ ( ν k + κ ) × F 1 : 1 , 0 1 : 2 , 1 1 : n , n + 1 ; 1 ω k 2 : 1 ; 1 , 2 u k k ! ,
where ω C ; n N 0 , | u | < 1 .

3. Fractional Derivative Formulas

In this section, we develop a variety of fractional derivative formulas involving the Mittag-Leffler (ML)-type confluent hypergeometric function. In order to achieve this, we will review the given pairs of generalized left- and right-sided fractional derivative operator D 0 + δ , χ , ρ and D δ , χ , ρ :
Definition 1. 
Let δ , χ , ρ C . Then, the left-sided fractional integral operator I 0 + δ , χ , ρ and corresponding left-sided fractional derivative operator D 0 + δ , χ , ρ can be represented as [12],
I 0 + δ , χ , ρ f ( x ) = x δ χ Γ ( δ ) 0 x ( x r ) δ 1 2 F 1 δ + χ , ρ ; δ ; 1 r x f ( r ) d r , x > 0 ,
where ( δ ) > 0 and
D 0 + δ , χ , ρ f ( x ) = I 0 + δ , χ , δ + ρ f ( x ) = d d x m I 0 + δ + ρ , χ ρ , δ + ρ m f ( x ) ,
where m = [ ( δ ) ] + 1 ; ( δ ) 0 and [ x ] represents the greatest integer belonging to x R .
Remark 1. 
On substituting χ = δ , χ = 0 , operator (19) coincides with the familiar “Riemann–Liouville ( RL ) fractional derivative operator R L D 0 + δ ” and the “left-sided Erdélyi-Kobar ( EK ) fractional derivative operator E K D 0 + δ , ρ ”, as given below (see [12]):
D 0 + δ , δ , ρ f ( x ) = RL D 0 + δ f ( x ) = d d x m 1 Γ ( m δ ) 0 x ( x r ) m δ 1 f ( r ) d r ,
and
D 0 + δ , 0 , ρ f ( x ) = EK D 0 + δ , ρ f ( x ) = x ρ d d x m 1 Γ ( m δ ) 0 x ( x r ) m δ 1 r δ + ρ f ( r ) d r ,
where ( δ ) 0 , m = [ ( δ ) ] + 1 ; x > 0 .
Definition 2. 
Let x > 0 , δ , χ , ρ C . Then, the right-sided fractional integral operator I δ , χ , ρ and corresponding right-sided fractional derivative operator D δ , χ , ρ can be defined as [12],
I δ , χ , ρ f ( x ) = 1 Γ ( δ ) x ( r x ) δ 1 r δ χ 2 F 1 δ + χ , ρ ; δ ; 1 x r f ( r ) d r , x > 0 ,
where ( δ ) > 0 and
D δ , χ , ρ f ( x ) = I δ , χ , δ + ρ f ( x ) = d d x m I 0 + δ + ρ , χ ρ , δ + ρ m f ( x ) ,
where m = [ ( δ ) ] + 1 ; ( δ ) 0 .
Remark 2. 
On substituting χ = δ , χ = 0 , operator (23) coincides with the “Weyl fractional derivative operator W D δ ” and the “right-sided Erdélyi-Kobar ( EK ) fractional derivative operator E K D δ , ρ ”, as given below (see [12]):
D δ , δ , ρ f ( x ) = W D δ f ( x ) = d d x m 1 Γ ( m δ ) x ( r x ) m δ 1 f ( r ) d r ,
and
D δ , 0 , ρ f ( x ) = EK D δ , ρ f ( x ) = x δ + ρ d d x m 1 Γ ( m δ ) x ( r x ) m δ 1 r ρ f ( r ) d r ,
where ( δ ) 0 , m = [ ( δ ) ] + 1 ; x > 0 .
Lemma 2. 
Let δ , χ , ρ , κ C with ( δ ) 0 , x > 0 . Then, we have the following fractional derivative formulas [12]:
D 0 + δ , χ , ρ r κ 1 ( x ) = Γ ( κ ) Γ ( κ + δ + χ + ρ ) Γ ( κ + χ ) Γ ( κ + ρ ) x κ + χ 1 ,
where ( κ ) > min 0 , ( δ + χ + ρ ) and
D δ , χ , ρ r κ 1 ( x ) = Γ ( 1 χ κ ) Γ ( 1 κ + δ + ρ ) Γ ( 1 κ ) Γ ( 1 κ + ρ χ ) x κ + χ 1 ,
where ( κ ) < 1 + min ( χ + ρ ) , ( δ + ρ ) .
Theorem 2. 
Let δ , ν , χ , η ρ , γ , κ C , such that ( δ ) 0 , ( ν ) > 0 and x > 0 . Then, the following left-sided fractional derivative formula is valid:
D 0 + δ , χ , ρ r κ 1 M ν , κ η , γ ( u r ν ) ( x ) = x κ + χ 1 Γ ( κ ) Γ ( γ ) 2 Ψ 2 ( γ , η ) , ( κ + δ + χ + ρ , ν ) ( κ + χ , ν ) , ( κ + ρ , ν ) u x ν ,
where ( κ ) > min 0 , ( δ + χ + ρ )
Proof. 
Using (7), we have
D 0 + δ , χ , ρ r κ 1 M ν , κ η , γ ( u r ν ) ( x ) = n = 0 Γ ( κ ) Γ ( η n + γ ) Γ ( γ ) Γ ( ν n + κ ) u n n ! × D 0 + δ , χ , ρ r ν n + κ 1 ( x ) .
Using (26), this proves Theorem 2. □
Corollary 3. 
If the assumptions stated in Theorem 2 are true, and substituting χ = δ and χ = 0 , the following fractional derivative formulas are valid:
RL D 0 + δ r κ 1 M ν , κ η , γ ( u r ν ) ( x ) = x κ δ 1 Γ ( κ ) Γ ( κ δ ) M ν , κ δ η , γ ( u x ν ) .
EK D 0 + δ , ρ r κ 1 M ν , κ η , γ ( u r ν ) ( x ) = x κ 1 Γ ( κ ) Γ ( γ ) 2 Ψ 2 ( γ , η ) , ( κ + δ + ρ , ν ) ( κ , ν ) , ( κ + ρ , ν ) u x ν .
Theorem 3. 
Let δ , χ , ρ , κ , ν , η , γ C , such that ( δ ) 0 , ( ν ) > 0 and x > 0 , t > 0 . Then, the following right-sided fractional derivative formula is valid:
D δ , χ , ρ r κ 1 M ν , κ η , γ u r ν ( x ) = x κ + χ 1 Γ ( κ ) Γ ( γ ) 3 Ψ 3 ( γ , η ) , ( 1 χ κ , ν ) , ( 1 κ + δ + ρ , ν ) ( κ , ν ) , ( 1 κ , ν ) , ( 1 κ + ρ χ , ν ) u x ν ,
where ( κ ) < 1 + min ( χ + ρ ) , ( δ + ρ )
Proof. 
Using (7), we have
D δ , χ , ρ r κ 1 M ν , κ η , γ u r ν ( x ) = n = 0 Γ ( κ ) Γ ( η n + γ ) Γ ( γ ) Γ ( ν n + κ ) u n n ! × D δ , χ , ρ r κ ν n 1 ( x ) .
Using (27), this proves Theorem 3. □
Corollary 4. 
If the assumptions stated in Theorem 3 are true, and substituting χ = δ and χ = 0 , the following fractional derivative formulas are valid:
W D δ r κ 1 M ν , κ η , γ u r ν ( x ) = x κ δ 1 Γ ( κ ) Γ ( γ ) 2 Ψ 2 ( γ , η ) , ( 1 + δ κ , ν ) ( κ , ν ) , ( 1 κ , ν ) u x ν .
EK D δ , ρ r κ 1 M ν , κ η , γ u r ν ( x ) = x κ 1 Γ ( κ ) Γ ( γ ) 2 Ψ 2 ( γ , η ) , ( 1 κ + δ + ρ , ν ) ( κ , ν ) , ( 1 κ + ρ , ν ) u x ν .

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. l’Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
  2. Wiman, A. Über den fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
  3. Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  4. Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
  5. Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
  6. Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler confluent hypergeometric functions with fractional integral operator. Math. Meth. Appl. Sci. 2020, 44, 3605–3614. [Google Scholar] [CrossRef]
  7. Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; Chapman and Hall (CRC Press), Taylor and Francis Group: London, UK; New York, NY, USA, 2014. [Google Scholar]
  8. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume II. [Google Scholar]
  9. Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
  10. Srivastava, H.M.; Agarwal, R.; Jain, S. Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions. Math. Methods Appl. Sci. 2017, 40, 255–273. [Google Scholar] [CrossRef]
  11. Srivastava, H.M.; Karlsson, P.W. Mathematics and Its Applications; Multiple Gaussian Hypergeometric Series; Ellis Horwood: Chichester, UK; Halsted Press (JohnWiley & Sons): New York, NY, USA, 1985. [Google Scholar]
  12. Kilbas, A.A.; Sebastian, N. Generalized fractional differentiation of Bessel function of the first kind. Math. Balkanica (New Ser.) 2008, 22, 323–346. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pal, A. Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function. Comput. Sci. Math. Forum 2023, 7, 42. https://doi.org/10.3390/IOCMA2023-14393

AMA Style

Pal A. Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function. Computer Sciences & Mathematics Forum. 2023; 7(1):42. https://doi.org/10.3390/IOCMA2023-14393

Chicago/Turabian Style

Pal, Ankit. 2023. "Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function" Computer Sciences & Mathematics Forum 7, no. 1: 42. https://doi.org/10.3390/IOCMA2023-14393

APA Style

Pal, A. (2023). Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function. Computer Sciences & Mathematics Forum, 7(1), 42. https://doi.org/10.3390/IOCMA2023-14393

Article Metrics

Back to TopTop