Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function †
Abstract
:1. Introduction
2. Jacobi and Related Integral Transforms
3. Fractional Derivative Formulas
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. l’Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler confluent hypergeometric functions with fractional integral operator. Math. Meth. Appl. Sci. 2020, 44, 3605–3614. [Google Scholar] [CrossRef]
- Debnath, L.; Bhatta, D. Integral Transforms and Their Applications, 3rd ed.; Chapman and Hall (CRC Press), Taylor and Francis Group: London, UK; New York, NY, USA, 2014. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume II. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Srivastava, H.M.; Agarwal, R.; Jain, S. Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions. Math. Methods Appl. Sci. 2017, 40, 255–273. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Mathematics and Its Applications; Multiple Gaussian Hypergeometric Series; Ellis Horwood: Chichester, UK; Halsted Press (JohnWiley & Sons): New York, NY, USA, 1985. [Google Scholar]
- Kilbas, A.A.; Sebastian, N. Generalized fractional differentiation of Bessel function of the first kind. Math. Balkanica (New Ser.) 2008, 22, 323–346. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, A. Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function. Comput. Sci. Math. Forum 2023, 7, 42. https://doi.org/10.3390/IOCMA2023-14393
Pal A. Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function. Computer Sciences & Mathematics Forum. 2023; 7(1):42. https://doi.org/10.3390/IOCMA2023-14393
Chicago/Turabian StylePal, Ankit. 2023. "Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function" Computer Sciences & Mathematics Forum 7, no. 1: 42. https://doi.org/10.3390/IOCMA2023-14393
APA StylePal, A. (2023). Generalized Integral Transform and Fractional Calculus Operators Involving a Generalized Mittag-Leffler (ML)-Type Function. Computer Sciences & Mathematics Forum, 7(1), 42. https://doi.org/10.3390/IOCMA2023-14393