Interpersonal Coordination Through Granger Causality Applied to AR Processes Modeling the Time Evolution of Low-Frequency Powers of RR Intervals †
Abstract
1. Introduction
- A protocol with four phases was defined and data was collected. Instead of having a single value of a biomarker for a task, its temporal evolution is considered over the whole task. The temporal evolution of the low-frequency (LF) power of each participant’s HRV process is derived. For each phase and each dyad, two time series constitute the input of the processing chain in order to decide the physiological dependency.
- Various approaches based on “associative” measures could be considered to address the above problem by taking into account the fact that the results must be interpreted easily by the physiologists. Thus, the normalized cross-correlation function could be studied, but the approach is sensitive to the number of samples available. Detrended cross-correlation analysis [15], which can be seen as an extension of the detrended fluctuation analysis [16] to two signals, is mainly used to quantify long-range cross-correlation between the processes. However, evaluating the long-range link is not necessarily of interest in our application. Cross-entropy-based approaches aim to quantify the degree of coupling between two signals. Thus, one could develop a method based on cross-sample entropy [17] or some variants [18,19]. One could eventually use the multiscale cross-trend sample entropy, whose goal is to evaluate the synchronism of the dynamical structure of two series with potential trends [20]. However, the above approaches may not necessarily be explicit enough for the physiologist for an a posteriori interpretation. Deep learning-based approaches could be developed, but the question of explainability is important.
2. Protocol, Data, and Features
2.1. Presentation of the Protocol
2.2. Pre-Analysis of the Collected Data
2.3. Extracting the LF Marker over Time
3. Whole Processing Chain
3.1. Assumption 1: Data Modeled by an AR Model
3.2. Assumption 2: Data Modeled by a Real Bivariate AR Model + Noise
3.3. Comparing the Variance of Prediction Error Under Independent or Correlated Assumptions
4. Results and Comments
4.1. Synthetic Data
4.2. Real Data
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Autoregressive |
DFT | Directed transfer function |
HRV | Heart rate variability |
LF | Low frequency |
w.s.s. | Wide-sense stationary |
References
- Mayo, O.; Gordon, I. In and out of synchrony-Behavioral and physiological dynamics of dyadic interpersonal coordination. Psychophysiology 2020, 57, e13574. [Google Scholar] [CrossRef]
- Chartrand, T.L.; Lakin, J.L. The antecedents and consequences of human behavioral mimicry. Annu. Rev. Psychol. 2013, 64, 285–308. [Google Scholar] [CrossRef]
- Ackerman, J.M.; Nocera, C.C.; Bargh, J.A. Incidental Haptic Sensations Influence Social Judgments and Decisions. Science 2010, 328, 1712–1715. [Google Scholar] [CrossRef] [PubMed]
- Bernieri, F.J.; Rosenthal, R. Interpersonal coordination: Behavior matching and interactional synchrony. In Fundamentals of Nonverbal Behavior; Cambridge University Press: Cambridge, UK, 1991; pp. 401–432. [Google Scholar]
- Palumbo, R.V.; Marraccini, M.E.; Weyandt, L.L.; Wilder-Smith, O.; McGee, H.A.; Liu, S.; Goodwin, M.S. Interpersonal Autonomic Physiology: A Systematic Review of the Literature. Personal. Soc. Psychol. Rev. Off. J. Soc. Personal. Soc. Psychol. 2017, 21, 99–141. [Google Scholar] [CrossRef] [PubMed]
- Almurad, Z.M.H.; Roume, C.; Delignières, D. Complexity matching in side-by-side walking. Hum. Mov. Sci. 2017, 54, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Almurad, Z.M.H.; Roume, C.; Blain, H.; Delignières, D. Complexity Matching: Restoring the Complexity of Locomotion in Older People Through Arm-in-Arm Walking. Front. Physiol. 2018, 9, 1766. [Google Scholar] [CrossRef]
- Codrons, E.; Bernardi, N.F.; Vandoni, M.; Bernardi, L. Spontaneous Group Synchronization of Movements and Respiratory Rhythms. PLoS ONE 2014, 9, e107538. [Google Scholar] [CrossRef]
- Guastello, S.J.; Pincus, D.; Gunderson, P.R. Electrodermal arousal between participants in a conversation: Nonlinear dynamics and linkage effects. Nonlinear Dyn. Psychol. Life Sci. 2006, 10, 365–399. [Google Scholar]
- Mønster, D.; Håkonsson, D.D.; Eskildsen, J.K.; Wallot, S. Physiological evidence of interpersonal dynamics in a cooperative production task. Physiol. Behav. 2016, 156, 24–34. [Google Scholar] [CrossRef]
- Bouny, P.; Arsac, L.M.; Touré Cuq, E.; Deschodt-Arsac, V. Entropy and Multifractal-Multiscale Indices of Heart Rate Time Series to Evaluate Intricate Cognitive-Autonomic Interactions. Entropy 2021, 23, 663. [Google Scholar] [CrossRef]
- Blons, E.; Arsac, L.; Gilfriche, P.; Deschodt-Arsac, V. Multiscale Entropy of Cardiac and Postural Control Reflects a Flexible Adaptation to a Cognitive Task. Entropy 2019, 21, 1024. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Blons, E.; Arsac, L.M.; Grivel, E.; Lespinet-Najib, V.; Deschodt-Arsac, V. Physiological Resonance in Empathic Stress: Insights from Nonlinear Dynamics of Heart Rate Variability. Int. J. Environ. Res. Public Health 2021, 18, 2081. [Google Scholar] [CrossRef]
- Podobnik, B.; Stanley, H.E. Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Nonstationary Time Series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef]
- Richman, J.; Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- He, J.; Shang, P.; Xiong, H. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods. Phys. A 2018, 500, 210–221. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, Y.; Guo, J.; Chen, X. Cross-fuzzy entropy: A new method to test pattern synchrony of bivariate time series. Inf. Sci. 2010, 180, 1715–1724. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, W.; Jiang, S. Detecting asynchrony of two series using multiscale cross-trend sample entropy. Nonlinear Dyn. 2020, 99, 451–1465. [Google Scholar] [CrossRef]
- Farrell, H.; O’Connor, F. The CNN Fear and Greed Index as a predictor of US equity index returns: Static and time-varying Granger causality. Financ. Res. Lett. 2025, 72, 106492. [Google Scholar] [CrossRef]
- Seth, A.K.; Barrett, A.B.; Barnett, L. Granger Causality Analysis in Neuroscience and Neuroimaging. J. Neurosci. 2015, 35, 3293–3297. [Google Scholar] [CrossRef] [PubMed]
- Scharf, L.; Wang, Y. Testing for Granger causality using a partial coherence statistic. Signal Process. 2023, 213, 109190. [Google Scholar] [CrossRef]
- Seth, A.K. A MATLAB toolbox for Granger causal connectivity analysis. J. Neurosci. Methods 2010, 186, 262–273. [Google Scholar] [CrossRef]
- Kaminski, M.; Blinowska, K. A new method of the description of the information flow in the brain structures. Biol. Cybern. 1991, 65, 203–210. [Google Scholar] [CrossRef]
- Van Mierlo, P.; Carrette, E.; Hallez, H.; Vonck, K.; Van Roost, D.; Boon, P.; Staelens, S. Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. NeuroImage 2011, 56, 1122–1133. [Google Scholar] [CrossRef] [PubMed]
- Task Force of The European Society of Cardiology and The North American; Society of Pacing and Electrophysiology. Heart rate variability Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Najim, M. Modeling, Estimation and Optimal Filtering in Signal Processing; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Markel, J.D.; Gray, A.H. On Autocorrelation Equation Applied to Speech Analysis. IEEE Trans. Audio Electroacoust. 1973, 21, 69–79. [Google Scholar] [CrossRef]
- Atal, B.S.; Hanauer, S.L. Speech Analysis and Synthesis by Linear Prediction of the Speech Wave. J. Acoust. Soc. Am. 1971, 50, 637–655. [Google Scholar] [CrossRef]
- Kay, S.M. Noise Compensation for Autoregressive Spectral Estimates. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 292–303. [Google Scholar] [CrossRef]
- Chan, Y.; Langford, R. Spectral estimation via the high-order Yule-Walker equations. IEEE Trans. Acoust. Speech, Signal Process. 1982, 30, 689–698. [Google Scholar] [CrossRef]
- Lee, T. Large sample identification and spectral estimation of noisy multivariate autoregressive processes. IEEE Trans. Acoust. Speech, Signal Process. 1983, 31, 76–82. [Google Scholar] [CrossRef]
- Zheng, W.X. Unbiased Identification of Autoregressive Signals Observed in Colored Noise. In Proceedings of the IEEE-ICASSP ‘98, Seattle, WA, USA, 15 May 1998; Volume 4, pp. 2329–2332. [Google Scholar]
- Zheng, W.X. A least-squares based method for autoregressive signal in presence of noise. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1999, 46, 531–534. [Google Scholar]
- Zheng, W.X. Autoregressive Parameter Estimation from Noisy Data. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 2000, 47, 71–75. [Google Scholar] [CrossRef]
- Zheng, W.X. Fast Identification of Autoregressive Signals from Noisy Observations. IEEE Trans. Circuits Syst. II Express Briefs 2005, 52, 43–48. [Google Scholar]
- Xia, Y.; Zheng, W.X. Novel parameter estimation of autoregressive signals in the presence of noise. Automatica 2015, 62, 98–105. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Karimi, M. Inverse filtering based method for estimation of noisy autoregressive signals. Signal Process. 2011, 91, 1659–1664. [Google Scholar] [CrossRef]
- Esfandiari, M.; Vorobyov, S.A.; Karimi, M. New estimation methods for autoregressive process in the presence of white observation noise. Signal Process. 2020, 171, 107480. [Google Scholar] [CrossRef]
- Nehorai, A.; Stoica, P. Adaptive algorithms for constrained ARMA signals in the presence of noise. IEEE Trans. Acoust. Speech Signal Process. 1998, 36, 1282–1291. [Google Scholar] [CrossRef]
- Deriche, M. AR parameter estimation from noisy data using the EM algorithm. In Proceedings of the ICASSP ’94, Adelaide, SA, Australia, 19–22 April 1994; Volume 4, pp. 69–72. [Google Scholar]
- Gannot, S.; Burshtein, D.; Weinstein, E. Iterative and Sequential Kalman Filter-Based Speech Enhancement Algorithms. IEEE Trans. Acoust. Speech, Signal Process. 1998, 6, 373–385. [Google Scholar] [CrossRef]
- Kuropatwinski, M.; Kleijn, B. On the EM algorithm for the estimation of speech AR parameters in noise. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 7044–7048. [Google Scholar]
- Labarre, D.; Grivel, E.; Berthoumieu, Y.; Todini, E.; Najim, M. Consistent estimation of autoregressive parameters from noisy observations based on two interacting Kalman filters. Signal Process. 2006, 86, 2863–2876. [Google Scholar] [CrossRef]
- Labarre, D.; Grivel, E.; Najim, M.; Christov, N. Dual H infinity Algorithms for Signal Processing—Application to Speech Enhancement. IEEE Trans. Signal Process. 2007, 55, 5195–5208. [Google Scholar] [CrossRef]
- Guidorzi, R.; Diversi, R.; Soverini, U. The Frisch scheme in algebraic and dynamic identification problems. Kybernetika 2008, 44, 585–616. [Google Scholar]
- Diversi, R.; Guidorzi, R.; Soverini, U. Identification of autoregressive models in the presence of additive noise. Int. J. Adapt. Control Signal Process. 2008, 22, 465–481. [Google Scholar] [CrossRef]
- Diversi, R. Identification of multichannel AR models with additive noise: A Frisch scheme approach. In Proceedings of the EUSIPCO 2018, Rome, Italy, 3–7 September 2018; pp. 1252–1256. [Google Scholar]
- Mahmoudi, A.; Karimi, M.; Amindavar, H. Parameter estimation of autoregressive signals in presence of colored AR(1) noise as a quadratic eignevalue problem. Signal Process. 2012, 92, 1151–1156. [Google Scholar] [CrossRef]
- Diversi, R.; Ijima, H.; Grivel, E. Prediction error method to estimate the AR parameters when the AR process is disturbed by a colored noise. In Proceedings of the ICASSP, Vancouver, BC, Canada, 26–31 May 2013; pp. 6143–6147. [Google Scholar]
Generation (Row) | Class 1 | Class 2 | Class 3 | Class 4 | Uncertainty |
---|---|---|---|---|---|
vs. Decision (Col.) | |||||
Class 1 | 96.8 | 0 | 0 | 0.2 | 3 |
Class 2 | 2.27 | 96.37 | 0 | 0.03 | 1.33 |
Class 3 | 1.97 | 0 | 97.17 | 0.1 | 0.76 |
Class 4 | 1.63 | 35.97 | 37.87 | 22.87 | 1.66 |
Generation (Row) | Class 1 | Class 2 | Class 3 | Class 4 | Uncertainty |
---|---|---|---|---|---|
vs. Decision (Col.) | |||||
Class 1 | 97.67 | 0 | 0 | 0.07 | 2.27 |
Class 2 | 1.50 | 97.37 | 0 | 0.03 | 1.10 |
Class 3 | 1.63 | 0 | 97.27 | 0.07 | 1.03 |
Class 4 | 0.80 | 31.83 | 31.57 | 34.60 | 1.20 |
Generation (Row) | Class 1 | Class 2 | Class 3 | Class 4 | Uncertainty |
---|---|---|---|---|---|
vs. Decision (Col.) | |||||
Class 1 | 96.67 | 0.07 | 0.03 | 0.03 | 3.20 |
Class 2 | 1.37 | 97.93 | 0 | 0.03 | 0.67 |
Class 3 | 1.20 | 0 | 97.90 | 0.00 | 0.90 |
Class 4 | 0.40 | 26.53 | 26.43 | 45.93 | 0.70 |
Dyad Number | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
---|---|---|---|---|
no. 1 | ND | ND | ND | ND |
no. 2 | ND | ND | ND | D |
no. 3 | ND | ND | D | D |
no. 4 | ND | ND | ND | ND |
no. 5 | ND | ND | ND | ND |
no. 6 | ND | ND | ND | ND |
no. 7 | ND | ND | ND | ND |
no. 8 | ND | ND | ND | ND |
no. 9 | ND | ND | ND | ND |
no. 10 | ND | ND | ND | ND |
no. 11 | D | ND | ND | D |
no. 12 | ND | ND | ND | ND |
no. 13 | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouny, P.; Grivel, E.; Diversi, R.; Deschodt Arsac, V. Interpersonal Coordination Through Granger Causality Applied to AR Processes Modeling the Time Evolution of Low-Frequency Powers of RR Intervals. Comput. Sci. Math. Forum 2025, 11, 30. https://doi.org/10.3390/cmsf2025011030
Bouny P, Grivel E, Diversi R, Deschodt Arsac V. Interpersonal Coordination Through Granger Causality Applied to AR Processes Modeling the Time Evolution of Low-Frequency Powers of RR Intervals. Computer Sciences & Mathematics Forum. 2025; 11(1):30. https://doi.org/10.3390/cmsf2025011030
Chicago/Turabian StyleBouny, Pierre, Eric Grivel, Roberto Diversi, and Veronique Deschodt Arsac. 2025. "Interpersonal Coordination Through Granger Causality Applied to AR Processes Modeling the Time Evolution of Low-Frequency Powers of RR Intervals" Computer Sciences & Mathematics Forum 11, no. 1: 30. https://doi.org/10.3390/cmsf2025011030
APA StyleBouny, P., Grivel, E., Diversi, R., & Deschodt Arsac, V. (2025). Interpersonal Coordination Through Granger Causality Applied to AR Processes Modeling the Time Evolution of Low-Frequency Powers of RR Intervals. Computer Sciences & Mathematics Forum, 11(1), 30. https://doi.org/10.3390/cmsf2025011030