Analysis of Economic and Growth Synchronization Between China and the USA Using a Markov-Switching–VAR Model: A Trend and Cycle Approach †
Abstract
1. Introduction
2. Literature Review and Theoretical Background
3. Methodology
3.1. The Model General Framework
3.2. Hamilton’s Approach (1989)
3.3. Bry and Boschan’s Approach (1971)
4. Estimation and Interpretations
4.1. Description of Variables
4.2. Cycle Presentation and MS-VAR Modeling
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caliendo, L.; Parro, F. Trade policy. Handb. Int. Econ. 2022, 5, 219–295. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Zhou, S.; Ng, S.T.; Wang, W.; Wang, L. Public opinion on smart infrastructure in China: Evidence from social media. Util. Policy 2025, 93, 101886. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Li, L.; Zeng, H. Regional impact and spillover effect of public infrastructure investment: An empirical study in the Yangtze River Delta, China. Growth Change 2020, 51, 1749–1765. [Google Scholar] [CrossRef]
- Krugman, P.R. On the Relationship Between Trade Theory and Location Theory. Rev. Int. Econ. 1993, 1, 110–122. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Brandt, L.; Leight, J.; Restuccia, D. Misallocation, Selection, and Productivity: A Quantitative Analysis With Panel Data From China. Econometrica 2022, 90, 1261–1282. [Google Scholar] [CrossRef]
- Brandt, L.; Morrow, P.M. Tariffs and the Organization of Trade in China. J. Int. Econ. 2017, 104, 85–103. [Google Scholar] [CrossRef]
- Blackwill, R.D.; Campbell, K.M. Xi Jinping on the Global Stage: Chinese Foreign Policy Under a Powerful but Exposed Leader; Council on Foreign Relations Press: New York, NY, USA, 2016. [Google Scholar]
- Chivvis, C.S.; Cuéllar, M.-F.; Medeiros, E.S.; Walt, S.M.; Culver, J.; Foot, R.; Bergsten, C.F.; Campanella, E.; Rithmire, M.; Fravel, M.T.; et al. US-China Relations for the 2030s: Toward a Realistic Scenario for Coexistence; Carnegie Endowment for International Peace: Washington, DC, USA, 2024. [Google Scholar]
- Lynch, T.F. The Future of Great Power Competition. In The Routledge Handbook of Great Power Competition; Routledge: London, UK, 2024; pp. 303–326. [Google Scholar]
- Elgahry, B.A. Floating versus fixed: How exchange rate regimes affect business cycles comovement between advanced and emerging economies. Cogent Econ. Financ. 2022, 10, 2116789. [Google Scholar] [CrossRef]
- Hamilton, J.D. A new approach to the economic analysis of nonstationary time series and the business cycle. Econom. J. Econom. Soc. 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Bry, G.; Boschan, C. Front matter to Cyclical Analysis of Time Series: Selected Procedures and Computer Programs; NBER: Cambridge, UK, 1971; pp. 13–22. [Google Scholar]
- Chan, S.; Hu, W. Geography and International Conflict: Ukraine, Taiwan, Indo-Pacific, and Sino-American Relations; Taylor & Francis: New York, NY, USA, 2024. [Google Scholar]
- Blackwell, R.H.; Li, B.; Kozel, Z.; Zhang, Z.; Zhao, J.; Dong, W.; Capodice, S.E.; Barton, G.; Shah, A.; Wetterlin, J.J.; et al. Functional implications of renal tumor enucleation relative to standard partial nephrectomy. Urology 2017, 99, 162–168. [Google Scholar] [CrossRef]
- Dua, P.; Tuteja, D. Synchronization in Cycles of China and India During Recent Crises: A Markov Switching Analysis. J. Quant. Econ. 2023, 21, 317–337. [Google Scholar] [CrossRef]
- Mundell, R.A. A theory of optimum currency areas. Am. Econ. Rev. 1961, 51, 657–665. [Google Scholar]
- McKinnon, R.I. Optimum currency areas. Am. Econ. Rev. 1963, 53, 717–725. [Google Scholar]
- Kenen, P.B. The international position of the dollar in a changing world. Int. Organ. 1969, 23, 705–718. [Google Scholar] [CrossRef]
- Frankel, J.A.; Rose, A.K. The Endogenity of the Optimum Currency Area Criteria. Econ. J. 1998, 108, 1009–1025. [Google Scholar] [CrossRef]
- Moneta, F.; Rüffer, R. Business cycle synchronisation in East Asia. J. Asian Econ. 2009, 20, 1–12. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.; Zhang, S. Business cycle synchronisation in East Asia: The role of value-added trade. World Econ. 2019, 42, 226–241. [Google Scholar] [CrossRef]
- Sato, K.; Zhang, Z. Real Output Co-movements in East Asia: Any Evidence for a Monetary Union? World Econ. 2006, 29, 1671–1689. [Google Scholar] [CrossRef]
- Shin, K.; Sohn, C. Trade and Financial Integration in East Asia: Effects on Co-movements. World Econ. 2006, 29, 1649–1669. [Google Scholar] [CrossRef]
- Kumakura, M. Trade and business cycle co-movements in Asia-Pacific. J. Asian Econ. 2006, 17, 622–645. [Google Scholar] [CrossRef]
- Rana, A.; Lakshmy, K.S. Analysis of the Growth in Indian Economy Using the Austrian Business Cycle Theory. Available online: https://repository.iimb.ac.in/handle/123456789/4050 (accessed on 25 March 2016).
- Rana, P.B. Trade Intensity and Business Cycle Synchronization: The Case of East Asia; ADB Working Paper Series on Regional Economic Integration; Asian Development Bank: Manila, Philippines, 2007. [Google Scholar]
- He, D.; Liao, W. Asian business cycle synchronization. Pac. Econ. Rev. 2012, 17, 106–135. [Google Scholar] [CrossRef]
- Ogawa, E.; Iwatsubo, K. External adjustments and coordinated exchange rate policy in Asia. J. Asian Econ. 2009, 20, 225–239. [Google Scholar] [CrossRef]
- Hallett, A.H.; Richter, C. Have the Eurozone economies converged on a common European cycle? Int. Econ. Econ. Policy 2008, 5, 71–101. [Google Scholar] [CrossRef]
- Kose, M.A.; Otrok, C.; Whiteman, C.H. Understanding the evolution of world business cycles. J. Int. Econ. 2008, 75, 110–130. [Google Scholar] [CrossRef]
- Kenen, P.B. Currency Areas, Policy Domains, and the Institutionalization of Fixed Exchange Rates; Centre for Economic Performance: London, UK, 2000. [Google Scholar]
- Baxter, M.; Kouparitsas, M.A. Determinants of business cycle comovement: A robust analysis. J. Monet. Econ. 2005, 52, 113–157. [Google Scholar] [CrossRef]
- Fidrmuc, J. The Endogeneity of the Optimum Currency Area Criteria, Intra-industry Trade, and EMU Enlargement. Contemp. Econ. Policy 2004, 22, 1–12. [Google Scholar] [CrossRef]
- Kalemli-Ozcan, S.; Sørensen, B.E.; Yosha, O. Risk Sharing and Industrial Specialization: Regional and International Evidence. Am. Econ. Rev. 2003, 93, 903–918. [Google Scholar] [CrossRef]
- Imbs, J. Trade, finance, specialization, and synchronization. Rev. Econ. Stat. 2004, 86, 723–734. [Google Scholar] [CrossRef]
- Calvo, S.G.; Reinhart, C. Capital Flows to Latin America: Is There Evidence of Contagion Effects. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=636120 (accessed on 25 March 2016).
- Kose, M.A.; Prasad, E.S.; Terrones, M.E. How Does Globalization Affect the Synchronization of Business Cycles? Am. Econ. Rev. 2003, 93, 57–62. [Google Scholar] [CrossRef]
- Dai, Y. Business Cycle Synchronization in Asia: The Role of Financial and Trade Linkages; ADB Working Paper Series on Regional Economic Integration; Asian Development Bank: Manila, Philippines, 2014. [Google Scholar]
- Owyang, M.T.; Piger, J.; Wall, H.J. Business cycle phases in US states. Rev. Econ. Stat. 2005, 87, 604–616. [Google Scholar] [CrossRef]
- Magrini, S.; Gerolimetto, M.; Duran, H.E. Business cycle dynamics across the US states. BE J. Macroecon. 2013, 13, 795–822. [Google Scholar] [CrossRef]
- Cainelli, G.; Lupi, C.; Tabasso, M. Business cycle synchronization among the US states: Spatial effects and regional determinants. Spat. Econ. Anal. 2021, 16, 397–415. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Brinca, P.; Guðjónsson, H.V.; Soares, M.J. Business cycle synchronization across U.S. states. BE J. Macroecon. 2017, 17, 20150158. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Soares, M.J. Oil and the macroeconomy: Using wavelets to analyze old issues. Empir. Econ. 2011, 40, 645–655. [Google Scholar] [CrossRef]
- Mensi, W.; Hammoudeh, S.; Nguyen, D.K.; Kang, S.H. Global financial crisis and spillover effects among the US and BRICS stock markets. Int. Rev. Econ. Finance 2016, 42, 257–276. [Google Scholar] [CrossRef]
- Kishor, N.K.; Ssozi, J. Business Cycle Synchronization in the Proposed East African Monetary Union: An Unobserved Component Approach. Rev. Dev. Econ. 2011, 15, 664–675. [Google Scholar] [CrossRef]
- Kydland, F.E.; Prescott, E.C. Time to build and aggregate fluctuations. Econom. J. Econom. Soc. 1982, 50, 1345–1370. [Google Scholar] [CrossRef]
- Long, J.B.; Plosser, C.I. Real Business Cycles. J. Polit. Econ. 1983, 91, 39–69. [Google Scholar] [CrossRef]
- Backus, D.K.; Kehoe, P.J.; Kehoe, T.J. In search of scale effects in trade and growth. J. Econ. Theory 1992, 58, 377–409. [Google Scholar] [CrossRef]
- Goodfriend, M.; King, R.G. The New Neoclassical Synthesis and the Role of Monetary Policy. NBER Macroecon. Annu. 1997, 12, 231–283. [Google Scholar] [CrossRef]
- Lucas, R.E. Understanding Business Cycles. In Essential Readings in Economics; Estrin, S., Marin, A., Eds.; Macmillan Education: London, UK, 1995; pp. 306–327. [Google Scholar] [CrossRef]
- Hodrick, R.J.; Prescott, E.C. Postwar US business cycles: An empirical investigation. J. Money Credit Bank. 1997, 29, 1–16. [Google Scholar] [CrossRef]
- Baxter, M.; King, R.G. Measuring business cycles: Approximate band-pass filters for economic time series. Rev. Econ. Stat. 1999, 81, 575–593. [Google Scholar] [CrossRef]
- Christiano, L.J.; Fitzgerald, T.J. The Band Pass Filter*. Int. Econ. Rev. 2003, 44, 435–465. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Lumsdaine, R.L.; Papell, D.H. Multiple trend breaks and the unit-root hypothesis. Rev. Econ. Stat. 1997, 79, 212–218. [Google Scholar] [CrossRef]
- Randles, R.H.; Fligner, M.A.; Policello, G.E.; Wolfe, D.A. An Asymptotically Distribution-Free Test for Symmetry versus Asymmetry. J. Am. Stat. Assoc. 1980, 75, 168–172. [Google Scholar] [CrossRef]
- Sichel, D.E. business cycle asymmetry: A deeper look. Econ. Inq. 1993, 31, 224–236. [Google Scholar] [CrossRef]
- Bernanke, B.S.; Mihov, I. Measuring monetary policy. Q. J. Econ. 1998, 113, 869–902. [Google Scholar] [CrossRef]
- Krolzig, H.-M. Econometric modelling of Markov-switching vector autoregressions using MSVAR for Ox. 1998. Available online: http://fmwww.bc.edu/ec-p/software/ox/Msvardoc.pdf (accessed on 25 March 2016).
- Harding, D.; Pagan, A. Dissecting the cycle: A methodological investigation. J. Monet. Econ. 2002, 49, 365–381. [Google Scholar] [CrossRef]
- Helali, K. Markov Switching-Vector AutoRegression Model Analysis of the Economic and Growth Cycles in Tunisia and Its Main European Partners. J. Knowl. Econ. 2022, 13, 656–686. [Google Scholar] [CrossRef]
- Tan, Z.; Wu, Y. On Regime Switching Models. Mathematics 2025, 13, 1128. [Google Scholar] [CrossRef]
- Perron, P. Further evidence on breaking trend functions in macroeconomic variables. J. Econom. 1997, 80, 355–385. [Google Scholar] [CrossRef]
Designations | HP Filters | BK Filters | ||
---|---|---|---|---|
IPIR_USA | IPIR_CHINA | IPIR_USA | IPIR_CHINA | |
Mean | 0.433 | 1.236 | −3.81 × 10−6 | −3.05 × 10−5 |
Median | 0.424 | 1.165 | 1.98 × 10−5 | −5.36 × 10−5 |
Maximum | 0.543 | 1.703 | 0.004 | 0.009 |
Minimum | 0.327 | 0.769 | −0.004 | −0.009 |
Standard deviation | 0.0557 | 0.257 | 0.001 | 0.002 |
Skewness | −0.009 | 0.226 | −0.901 | −0.118 |
Kurtosis | 2.127 | 1.571 | 12.387 | 5.501 |
Jarque–Bera | 9.403 | 27.682 | 1081.081 | 74.684 |
Probability | 0.009 | 0.000 | 0.000 | 0.000 |
Observations | 284 | 284 | 284 | 284 |
Models | Designation | IPIR_USA | IPIR_CHINA |
---|---|---|---|
HP filter | |||
A | t-statistics | −5.904 ** | −5.008 * |
Delay | 1 | 8 | |
Breakpoint | 2009M07 | 2008M07 | |
p-value | 0.000 | 0.000 | |
B | t-statistics | −5.792 ** | −4.613 * |
Delay | 1 | 8 | |
Breakpoint | 2004M08 | 2006M12 | |
p-value | 0.000 | 0.000 | |
C | t-statistics | −5.967 ** | −5.322 * |
Delay | 1 | 8 | |
Breakpoint | 2020M09 | 2008M07 | |
p-value | 0.000 | 0.000 | |
Decision | Stationary | Stationary | |
BK filter | |||
A | t-statistics | −5.903 ** | −6.621 ** |
Delay | 8 | 8 | |
Breakpoint | 2009M07 | 2009M06 | |
p-value | 0.000 | 0.000 | |
B | t-statistics | −5.791 ** | −6.392 ** |
Delay | 2004M08 | 2004M04 | |
Breakpoint | 8 | 8 | |
p-value | 0.000 | 0.000 | |
C | t-statistics | −5.967 ** | −6.647 ** |
Delay | 8 | 2009M06 | |
Breakpoint | 2020M09 | 8 | |
p-value | 0.000 | 0.000 | |
Decision | Stationary | Stationary |
Models | Designation | IPIR_USA | IPIR_CHINA |
---|---|---|---|
HP filter | |||
A | t-statistics | −5.900 * | −7.012 ** |
Delay | 2 | 10 | |
Breakpoint | 2011M09 | 2020M03 | |
B | t-statistics | −5.539 * | −6.619 ** |
Delay | 2 | 4 | |
Breakpoint | 2012M09 | 2020M03 | |
C | t-statistics | −6.263 ** | −5.350 * |
Delay | 2 | 12 | |
Breakpoint | 2019M05 | 2006M12 | |
Decision | Stationary | Stationary | |
BK filter | |||
A | t-statistics | −10.341 *** | −16.099 *** |
Delay | 12 | 0 | |
Breakpoint | 2019M07 | 2020M05 | |
B | t-statistics | −10.420 *** | −7.897 *** |
Delay | 12 | 10 | |
Breakpoint | 2003M06 | 2020M03 | |
C | t-statistics | −9.434 *** | −5.857 * |
Delay | 11 | 10 | |
Breakpoint | 2000M09 | 2002M05 | |
Decision | Stationary | Stationary |
Models | Designation | USA_IPIR | CHINA_IPIR |
---|---|---|---|
HP | |||
A | t-statistics | −6.006 * | −5.997 * |
Delay | 8 | 8 | |
Breakpoint | 2007:12; 2019:03 | 2008:07; 2020:02 | |
B | t-statistics | −4.880 | −4.717 |
Delay | 8 | 8 | |
Breakpoint | 2004:04; 2008:08 | 2006:04; 2009:11 | |
C | t-statistics | −6.553 ** | −6.183 * |
Delay | 8 | 8 | |
Breakpoint | 2005:11; 2009:06 | 2008:08; 2012:04 | |
Decision | Stationary | Stationary | |
BK | |||
A | t-statistics | −6.222 ** | −6.596 ** |
Delay | 8 | 8 | |
Breakpoint | 2008:06; 201908 | 2008:10; 2019:10 | |
B | t-statistics | −5.890 * | −5.375 |
Delay | 8 | 8 | |
Breakpoint | 2004:08; 2008:09 | 2006:02; 2009:07 | |
C | t-statistics | −6.590 ** | −6.526 ** |
Delay | 8 | 8 | |
Breakpoint | 2005:12; 2009:06 | 2008:10; 2019:11 | |
Decision | Stationary | Stationary |
Designation | IPIR_CHINA | IPIR_USA | ||
---|---|---|---|---|
m | Statistic | Probability | Statistic | Probability |
HP Filter | ||||
2 | 0.106 | 0.000 | 0.145 | 0.000 |
3 | 0.167 | 0.000 | 0.242 | 0.000 |
4 | 0.202 | 0.000 | 0.303 | 0.000 |
5 | 0.216 | 0.000 | 0.337 | 0.000 |
6 | 0.221 | 0.000 | 0.353 | 0.000 |
BK Filter | ||||
2 | 0.112 | 0.000 | 0145 | 0.000 |
3 | 0.180 | 0.000 | 0.238 | 0.000 |
4 | 0.220 | 0.000 | 0.290 | 0.000 |
5 | 0.239 | 0.000 | 0.319 | 0.000 |
6 | 0.247 | 0.000 | 0.329 | 0.000 |
Models | Designation | IPIR_USA | IPIR_CHINA |
---|---|---|---|
HP Filter | |||
Triples Test | t-statistic | −1.049 | −0.241 |
p-value | 0.295 | 0.810 | |
Sichel Test | Skewness | −0.119 | −0.906 |
Kurtosis | 18.868 | −1.944 | |
BK Filter | |||
Triples Test | t-statistic | −1.048 | 0.199 |
p-value | 0.000 | 0.843 | |
Sichel Test | Skewness | −1.049 | 1.198 |
Kurtosis | 6.688 | 9.575 |
HP Filter | Turning Points | Duration of Recession | Expansion Duration | Cycle Duration | Cycle Duration | |
---|---|---|---|---|---|---|
Peak (P) | Trough (T) | Peak to Trough (P to T) | Trough-to-Peak (T to P) | Peak to Peak (P to P) | Trough-to-Trough (T to T) | |
USA | - | 2002M02 | - | - | - | - |
2000M07 | 2005M02 | 19 | - | - | 36 | |
2003M02 | 2008M11 | 24 | 12 | 31 | 45 | |
2007M06 | 2012M04 | 17 | 28 | 28 | 41 | |
2009M11 | 2015M08 | 29 | 12 | 12 | 40 | |
2013M08 | 2020M02 | 24 | 16 | 16 | 54 | |
2019M03 | 2022M04 | 11 | 43 | 43 | 26 | |
2021M03 | 13 | 13 | 13 | - | ||
Average duration | 19.6 | 15.9 | 20.4 | 34.6 | ||
China | - | 2001M11 | - | - | - | - |
2002M06 | 2003M08 | 14 | 7 | - | 21 | |
2005M02 | 2005M09 | 7 | 18 | 32 | 25 | |
2008M01 | 2009M06 | 17 | 28 | 35 | 45 | |
2010M09 | 2011M05 | 8 | 15 | 32 | 23 | |
2012M02 | 2012M09 | 7 | 9 | 17 | 16 | |
2014M12 | 2017M02 | 26 | 27 | 34 | 53 | |
2018M12 | 2020M04 | 16 | 22 | 48 | 38 | |
2021M07 | 2022M12 | 17 | 15 | 31 | 32 | |
Average duration | 14 | 20 | 25.4 | 31.6 |
BK Filter | Turning Points | Duration of Recession | Expansion Duration | Cycle Duration | Cycle Duration | |
---|---|---|---|---|---|---|
Peak (P) | Trough (T) | Peak to Trough (P to T) | Trough-to-Peak (T to P) | Peak to Peak (P to P) | Trough-to-Trough (T to T) | |
USA | 2001M08 | - | - | - | - | - |
2006M12 | 2006M04 | 8 | 56 | - | 64 | |
2008M11 | 2007M07 | 16 | 7 | 15 | 23 | |
2010M09 | 2009M12 | 9 | 13 | 29 | 22 | |
2012M06 | 2011M11 | 7 | 14 | 23 | 21 | |
2015M06 | 2013M09 | 21 | 15 | 22 | 36 | |
2018M09 | 2018M04 | 5 | 34 | 55 | 39 | |
2020M02 | 2019M08 | 6 | 11 | 16 | 17 | |
2022M04 | 2021M03 | 13 | 13 | 19 | 26 | |
2023M08 | 2022M10 | 10 | 6 | 19 | 16 | |
Average duration | 9.5 | 18.7 | 19.8 | 25 | ||
China | 2001M12 | 2002M06 | 6 | 13.0 | 19 | - |
2003M07 | 2005M03 | 20 | 7.0 | 28 | 33 | |
2005M10 | 2008M03 | 29 | 14.0 | 43 | 36 | |
2009M05 | 2010M08 | 15 | 10.0 | 25 | 29 | |
2011M06 | 2012M03 | 9 | 7.0 | 16 | 19 | |
2012M10 | 2014M12 | 26 | 46.0 | 48 | 33 | |
2016M10 | 2019M11 | 37 | 6.0 | 31 | 59 | |
2019M05 | 2023M07 | 50 | - | 32 | 44 | |
Average duration | 24 | 14.7 | 30.3 | 36.1 |
Filters | Model | Regime | ηi | βi | ∆j | Pii | DM | LM | CC | JB |
---|---|---|---|---|---|---|---|---|---|---|
BK | MS(2)-VAR(1) | 1 | −246.310 | −535.137 | 0.000 | 0.669 | 0.331 | −3236.134 | 0.000 | 2926.398 (0.000) |
2 | 245.830 | 552.721 | 0.000 | 0.331 | 1.459 | |||||
HP | MS(2)-VAR(1) | 1 | −245.826 | −537.175 | 0.000 | 0.669 | 0.331 | −3248.005 | 0.000 | 3838.799 (0.000) |
2 | 245.356 | 548.312 | 0.000 | 0.331 | 1.459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouattour, M.; Abaab, M.; Chibani, H.; Becha, H.; Helali, K. Analysis of Economic and Growth Synchronization Between China and the USA Using a Markov-Switching–VAR Model: A Trend and Cycle Approach. Comput. Sci. Math. Forum 2025, 11, 28. https://doi.org/10.3390/cmsf2025011028
Bouattour M, Abaab M, Chibani H, Becha H, Helali K. Analysis of Economic and Growth Synchronization Between China and the USA Using a Markov-Switching–VAR Model: A Trend and Cycle Approach. Computer Sciences & Mathematics Forum. 2025; 11(1):28. https://doi.org/10.3390/cmsf2025011028
Chicago/Turabian StyleBouattour, Mariem, Malek Abaab, Hajer Chibani, Hamdi Becha, and Kamel Helali. 2025. "Analysis of Economic and Growth Synchronization Between China and the USA Using a Markov-Switching–VAR Model: A Trend and Cycle Approach" Computer Sciences & Mathematics Forum 11, no. 1: 28. https://doi.org/10.3390/cmsf2025011028
APA StyleBouattour, M., Abaab, M., Chibani, H., Becha, H., & Helali, K. (2025). Analysis of Economic and Growth Synchronization Between China and the USA Using a Markov-Switching–VAR Model: A Trend and Cycle Approach. Computer Sciences & Mathematics Forum, 11(1), 28. https://doi.org/10.3390/cmsf2025011028