Biodegradation of Petrochemical Plastics by Microorganisms: Toward Sustainable Solutions for Plastic Pollution
Abstract
1. Introduction
2. The Challenge of Petrochemical Plastics
3. Treatment of Petrochemical Plastics
3.1. Physical Methods
3.2. Chemical Methods
3.3. Biological Methods
4. Microorganisms: The Biological Answer
4.1. Polyethylene—♴ ♶
4.2. Polypropylene—♷
4.3. Poly(Ethylene Terephthalate)—♳
4.4. Polyvinyl Chloride—♵
4.5. Polystyrene—♸
4.6. Polycarbonate, Polyamide, and Polyurethane—♹
5. Genetic and Protein Engineering for Enhanced Biodegradation of Petrochemical Plastics and Its Regulatory Framework
Group | Host | Protein/Gen | Source | Plastic Type | Reference |
---|---|---|---|---|---|
Bacteria | Bacillus subtilis | PETase and MHETase | Piscinibacter sakaiensis | PET | [155] |
Bacteria | Clostridium thermocellum | Cutinasa | Metagenome | PET | [160] |
Bacteria | Escherichia coli | TfCut2, Tcur1278, Tcur0390 | Thermobifida fusca, Thermomonospora curvata, metagenome (LCC) | Impranil DLN (PUR), Elastollan B85A/C85A | [161] |
Bacteria | Escherichia coli BL21 | alkB | Pseudomonas sp. E4 | Low molecular weight polyethylene (PE) | [150] |
Bacteria | Escherichia coli BL21 (DE3) | MHETase | Piscinibacter sakaiensis | PET | [153] |
Bacteria | Escherichia coli BL21-Gold(DE3) | Cbotu_EstA | Clostridium botulinum | Poly(butylene adipate-co-butylene terephthalate) (PBAT) | [151] |
Bacteria | Escherichia coli JM109 | pudA | Comamonas acidovorans TB-35 | PUR | [162] |
Bacteria | Escherichia coli TOP10 | Tcur1278 and Tcur0390 | Thermomonospora curvata | PET | [152] |
Fungus | Kluyveromyces lactis | Lacasse | Trametes trogii (Fungi) | PP | [157] |
Fungus | Pichia pastoris | Chimeric protein Lip-Cut | Thermomyces lanuginosus (Lip) and Thielavia terrestris NRRL 8126 (Cut) | Ester bond degradation | [158] |
Plant | Chlamydomonas reinhardtii | PETase | Piscinibacter sakaiensis | PET | [162] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastic Pollution. Available online: https://ourworldindata.org/plastic-pollution (accessed on 27 May 2025).
- Yuan, Z.; Nag, R.; Cummins, E. Ranking of potential hazards from microplastics polymers in the marine environment. J. Hazard. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef]
- Impacts of Plastic Pollution. Available online: https://www.epa.gov/plastics/impacts-plastic-pollution (accessed on 27 May 2025).
- Wang, L.; Li, S.; Ahmad, I.; Zhang, G.; Sun, Y.; Wang, Y.; Sun, C.; Jiang, C.; Cui, P.; Li, D. Global face mask pollution: Threats to the environment and wildlife, and potential solutions. Sci. Total Environ. 2023, 887, 164055. [Google Scholar] [CrossRef]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef] [PubMed]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Tuuri, E.; Leterme, S. How plastic debris and associated chemicals impact the marine food web: A review. Environ. Pollut. 2023, 321, 121156. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Singh, R.; Mishra, D. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products-A world prospective. Renew. Sustain. Energy Rev. 2010, 14, 233–248. [Google Scholar] [CrossRef]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers 2013, 5, 1–18. [Google Scholar] [CrossRef]
- Tan, A.F.J.; Yu, S.; Wang, C.; Yeoh, G.H.; Teoh, W.Y.; Yip, A.C.K. Reimagining plastics waste as energy solutions: Challenges and opportunities. npj Mater. Sustain. 2024, 2, 2. [Google Scholar] [CrossRef]
- Hasheminezhad, A.; Farina, A.; Yang, B.; Ceylan, H.; Kim, S.; Tutumluer, E.; Cetin, B. The utilization of recycled plastics in the transportation infrastructure systems: A comprehensive review. Constr. Build. Mater. 2024, 411, 134448. [Google Scholar] [CrossRef]
- Singh, N.; Walker, T.R. Plastic recycling: A panacea or environmental pollution problem. npj Mater. Sustain. 2024, 2, 17. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Urbanek, A.; Rymowicz, W.; Mironczuk, A. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.; Abu-Omar, M.; Scott, S.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Sathish, T.; Saravanan, R.; Vijayan, V.; Kumar, S. Investigations on influences of MWCNT composite membranes in oil refineries waste water treatment with Taguchi route. Chemosphere 2022, 298, 134265. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.; Wang, H.; Wang, C.; Zhang, X.; Zhao, X.; Dong, C.; Huang, Y.; Chen, S.; Guo, P.; She, X.; et al. Cooperation of oxygen vacancy and FeIII/FeII sites in H2-reduced Fe-MIL-101 for enhanced Fenton-like degradation of organic pollutants. J. Hazard. Mater. 2023, 441, 129922. [Google Scholar] [CrossRef]
- Noël, M.; Wong, C.; Ross, P.; Patankar, S.; Etemadifar, A.; Morales-Caselles, C.; Lyons, S.; Delisle, K. Microplastics distribution in sediment and mussels along the British Columbia Coast, Canada. Mar. Pollut. Bull. 2022, 185, 114273. [Google Scholar] [CrossRef] [PubMed]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef]
- Sintac. Available online: https://sintac.es/en/recycling-symbols-and-their-meanings/ (accessed on 7 June 2025).
- Sharma, S.; Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 2017, 24, 21530–21547. [Google Scholar] [CrossRef]
- Kibria, M.G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20. [Google Scholar] [CrossRef]
- Killinger, L.; Hanich-Spahn, R.; Flick, K.; Hashmi, A. Lewis-pair-catalytic depolymerization of post-consumer polyethylene terephthalate (PET) waste. Polym. Degrad. Stab. 2025, 233, 111163. [Google Scholar] [CrossRef]
- Kassab, A.; Nabhani, D.A.; Mohanty, P.; Pannier, C.; Ayoub, G.Y. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers 2023, 15, 3881. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Haque, R.; Jahirul, M.; Rasul, M. Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts. Energy Convers. Manag. 2025, 326, 119511. [Google Scholar] [CrossRef]
- Alaghemandi, M. Sustainable Solutions Through Innovative Plastic Waste Recycling Technologies. Sustainability 2024, 16, 10401. [Google Scholar] [CrossRef]
- Zhao, H.; Ye, Y.; Zhang, Y.; Yang, L.; Du, W.; Wang, S.; Hou, Z. Upcycling of waste polyesters for the development of a circular economy. Chem. Commun. 2024, 60, 13832–13857. [Google Scholar] [CrossRef]
- DesVeaux, J.S.; Uekert, T.; Curley, J.B.; Choi, H.; Liang, Y.; Singh, A.; Mante, O.D.; Beckham, G.T.; Jacobsen, A.J.; Knauer, K.M. Mixed polyester recycling can enable a circular plastic economy with environmental benefits. One Earth 2024, 7, 2204–2222. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, J.; Lv, J.; Zhu, Y.; Huang, Q.; Sun, C. Solar-driven reforming of waste polyester plastics into hydrogen over CdS/NiS catalyst. Int. J. Hydrog. Energy 2024, 51, 91–103. [Google Scholar] [CrossRef]
- Zeng, G.; Su, Y.; Jiang, J.; Huang, Z. Nitrogenative Degradation of Polystyrene Waste. J. Am. Chem. Soc. 2025, 147, 2737–2746. [Google Scholar] [CrossRef]
- Roy, A.; Chakraborty, S. A comprehensive review on sustainable approach for microbial degradation of plastic and it’s challenges. Sustain. Chem. Environ. 2024, 7, 100153. [Google Scholar] [CrossRef]
- Nasrabadi, A.; Ramavandi, B.; Bonyadi, Z. Recent progress in biodegradation of microplastics by Aspergillus sp. in aquatic environments. Colloid Interface Sci. Commun. 2023, 57, 100754. [Google Scholar] [CrossRef]
- Maity, W.; Maity, S.; Bera, S.; Roy, A. Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes. Appl. Biochem. Biotechnol. 2021, 193, 2699–2716. [Google Scholar] [CrossRef]
- Viel, T.; Manfra, L.; Zupo, V.; Libralato, G.; Cocca, M.; Costantini, M. Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers 2023, 15, 2673. [Google Scholar] [CrossRef]
- Mican, J.; Jaradat, D.; Liu, W.; Weber, G.; Mazurenko, S.; Bornscheuer, U.; Damborsky, J.; Wei, R.; Bednar, D. Exploring new galaxies: Perspectives on the discovery of novel PET-degrading enzymes. Appl. Catal. B-Environ. Energy 2024, 342, 123404. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Ali, S.; Srivastava, A.; Singh, A.; Agarwal, H.; Chauhan, R.; Joshi, N.; Dufossé, L.; Chauhan, A. Bioremediation of microplastic pollution: A systematic review on mechanism, analytical methods, innovations, and omics approaches. J. Hazard. Mater. Adv. 2025, 19, 100777. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Gao, R.; Sun, C. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. J. Hazard. Mater. 2021, 416, 125928. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streit, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef]
- Sarvutiene, J.; Prentice, U.; Ramanavicius, S.; Ramanavicius, A. Molecular imprinting technology for biomedical applications. Biotechnol. Adv. 2024, 71, 108318. [Google Scholar] [CrossRef]
- Nasser, R.M.; El Shazly, R.I.; Haseeb, M.E. Depolymerization for a Circular Economy: Sustainable Polymer Waste Management and Resource Recovery. In Depolymerization: Concepts, Progress, and Challenges Volume 3: Emerging Trends; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2025; Volume 1501, pp. 137–168. [Google Scholar]
- Chamizo-Ampudia, A.; Alonso, R.M.; Ariza-Carmona, L.; Sanchiz, Á.; San-Martín, M.I. A Review of Bioelectrochemical Strategies for Enhanced Polyhydroxyalkanoate Production. Bioengineering 2025, 12, 616. [Google Scholar] [CrossRef]
- Getino, L.; Martín, J.L.; Chamizo-Ampudia, A.; Getino, L.; Martín, J.L.; Chamizo-Ampudia, A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024, 12, 2028. [Google Scholar] [CrossRef]
- Getino, L.; García, I.; Cornejo, A.; Mateos, R.; Ariza-Carmona, L.M.; Sánchez-Castro, N.; Moran, J.F.; Olivera, E.R.; Chamizo-Ampudia, A. The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative Pseudomonas putida U. Polymers 2025, 17, 150. [Google Scholar] [CrossRef]
- Yong, C.; Valiyaveettil, S.; Tang, B. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, R.; Zhou, Q.; Li, J.; Fan, Y.; Chen, Q. Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review. J. Contam. Hydrol. 2025, 269, 104499. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, S.; Robson, G.; Javed, I.; Ali, N.; Atiq, N.; Hameed, A. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J. Basic Microbiol. 2014, 54, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Zarus, G.M.; Muianga, C.; Brenner, S.; Stallings, K.; Casillas, G.; Pohl, H.R.; Mumtaz, M.M.; Gehle, K. Worker studies suggest unique liver carcinogenicity potential of polyvinyl chloride microplastics. Am. J. Ind. Med. 2023, 66, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, P.; Koskinen, M.; Naccarati, A.; Oesch-Bartlomowicz, B.; Vodickova, L.; Hemminki, K.; Oesch, F. Styrene Metabolism, Genotoxicity, and Potential Carcinogenicity. Drug Metab. Rev. 2006, 38, 805–853. [Google Scholar] [CrossRef] [PubMed]
- Zaman, I.; Turjya, R.; Shakil, M.; Al Shahariar, M.; Emu, M.; Ahmed, A.; Hossain, M. Biodegradation of polyethylene and polystyrene by Zophobas atratus larvae from Bangladeshi source and isolation of two plastic-degrading gut bacteria. Environ. Pollut. 2024, 345, 123446. [Google Scholar] [CrossRef]
- Pabortsava, K.; Lampitt, R. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 2020, 11, 4073. [Google Scholar] [CrossRef]
- Nedi, E.; Ebu, S.; Somboo, M. Identification and molecular characterization of Polyethylene degrading bacteria from garbage dump sites in Adama, Ethiopia. Environ. Technol. Innov. 2024, 33, 103441. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Cyanobacterial degradation of low-density polyethylene (LDPE) by Nostoc carneum isolated from submerged polyethylene surface in domestic sewage water. Energy Ecol. Environ. 2019, 4, 240–252. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. 2018, 25, 33508–33520. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Gu, W.; Wang, S.; Li, Y. Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). Sci. Total Environ. 2024, 927, 172243. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.; Szymanska, S.; Kowalkowski, T.; Hrynkiewicz, K. Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiol. Res. 2023, 267, 127251. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Shukri, Z.N.A.; Waiho, K.; Ibrahim, Y.S.; Kamaruzzan, A.S.; Rahim, A.I.A.; Draman, A.S.; Wahab, W.; Khatoon, H.; Kasan, N.A. Biodegradation of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics by floc-forming bacteria, Bacillus cereus strain SHBF2, isolated from a commercial aquafarm. Environ. Sci. Pollut. Res. Int. 2024, 31, 32225–32245. [Google Scholar] [CrossRef]
- Newrick, B.; Valdés, D.; Laca, A.; Laca, A.; Díaz, M. Enhanced biodegradation of high-density polyethylene microplastics: Study of bacterial efficiency and process parameters. J. Hazard. Mater. 2025, 485, 136822. [Google Scholar] [CrossRef]
- Auta, H.; Emenike, C.; Fauziah, S. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef]
- Ji, S.H.; Yoo, S.; Park, S.; Lee, M.J. Biodegradation of low-density polyethylene by plasma-activated Bacillus strain. Chemosphere 2024, 349, 140763. [Google Scholar] [CrossRef]
- Sharma, H.; Neelam, D. Biodegradation efficacy of Exiguobacterium sp. HSK30 towards vegetable packaging LDPE film. Biologia 2025, 80, 1469–1482. [Google Scholar] [CrossRef]
- Wafaa, D.; Sadik, M.; Eissa, H.; Tonbol, K. Biodegradation of low-density polyethylene LDPE by marine bacterial strains Gordonia alkanivorans PBM1 and PSW1 isolated from Mediterranean Sea, Alexandria, Egypt. Sci. Rep. 2025, 15, 16769. [Google Scholar] [CrossRef]
- Sardar, R. Identification and biodegradation characterization of high-density polyethylene using marine bacteria isolated from the coastal region of the Arabian Sea, at Gujarat, India. World J. Microbiol. Biotechnol. 2025, 41, 74. [Google Scholar] [CrossRef]
- Uddin, M.; Venkatesan, S.; Pal, S.; Vinu, R.; Sekar, K.; Kandasamy, R. Accelerating biodegradation efficiency of low-density polyethylene and its hazardous dissolved organic matter using unexplored polyolefin-respiring bacteria: New insights on degradation characterization, biomolecule influence and biotransformation pathways. J. Hazard. Mater. 2025, 492, 138144. [Google Scholar] [CrossRef]
- Meng, Q.; Yi, X.; Zhou, H.; Song, H.; Liu, Y.; Zhan, J.; Pan, H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. Mar. Pollut. Bull. 2024, 207, 116875. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.; Shin, Y.; Choi, S.; Park, J.; Kim, H.; Lim, K.; Ha, S. Efficient biodegradation of low-density polyethylene by Pseudomonas plecoglossicida SYp2123 was observed through FT-IR and FE-SEM analysis. Biotechnol. Bioprocess Eng. 2024, 29, 743–750. [Google Scholar] [CrossRef]
- Mazaheri, H.; Nazeri, S. Biodegradation and Detoxification of Low-Density Polyethylene (LDPE) by Stenotrophomonas sp. and Alcaligenaceae bacterium. Bull. Environ. Contam. Toxicol. 2024, 112, 19. [Google Scholar] [CrossRef] [PubMed]
- Skariyachan, S.; Taskeen, N.; Kishore, A.; Krishna, B.; Naidu, G. Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. J. Environ. Manag. 2021, 284, 112030. [Google Scholar] [CrossRef] [PubMed]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Hock, O.; Kee, W.; Ahmed, R.; Ying, J.; Rui, W.; Er, L.; Tanee, T. Degradation of Polypropylene Using Fungal Enzyme As A Sustainable Approach To Management Plastic Waste. Malays. Appl. Biol. 2024, 53, 93–100. [Google Scholar] [CrossRef]
- Lomwongsopon, P.; Martínez, B.M.; Jiménez, A.B.; Bardenstein, A.L.; Kusano, Y.; Christiansen, J.d.C.; Varrone, C. Enhancing biodegradation of polyolefins and real mixed plastic waste by combination of pretreatment and mixed microbial consortia. Chemosphere 2025, 373, 144151. [Google Scholar] [CrossRef]
- Xian, Z.; Yin, C.; Zheng, L.; Zhou, N.; Xu, Y. Biodegradation of additive-free polypropylene by bacterial consortia enriched from the ocean and from the gut of Tenebrio molitor larvae. Sci. Total Environ. 2023, 892, 164721. [Google Scholar] [CrossRef]
- Samat, A.; Carter, D.; Abbas, A. Biodeterioration of pre-treated polypropylene by Aspergillus terreus and Engyodontium album. npj Mater. Degrad. 2023, 7, 28. [Google Scholar] [CrossRef]
- Devi, K.; Raju, P.; Santhanam, P.; Kumar, S.; Krishnaveni, N.; Roopavathy, J.; Perumal, P. Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch. Microbiol. 2021, 203, 6253–6265. [Google Scholar] [CrossRef] [PubMed]
- Wijayanti, C.; Sanjaya, E.H.; Wahab, R.A.; Susanti, E. Exploration of the polypropylene degrading bacteria candidates from the passive zone of the Supit Urang landfill in Malang city by using the next generation sequencing (NGS) method. Highlights Biosci. 2024, 7, bs202402. [Google Scholar] [CrossRef]
- Denaro, M.A.; Olivelli, M.; Bernabeu, P.R. Biodegradation of polypropylene in presence of chromium mediated by Stenotrophomonas sp. and Lysinibacillus sp. isolated from wetland sediments. Curr. Microbiol. 2025, 82, 369. [Google Scholar] [CrossRef]
- Jeyavani, J.; Al-Ghanim, K.; Govindarajan, M.; Nicoletti, M.; Malafaia, G.; Vaseeharan, B. Bacterial screening in Indian coastal regions for efficient polypropylene microplastics biodegradation. Sci. Total Environ. 2024, 918, 170499. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Bai, L.; Hou, C.; Zheng, C.; Li, W. Biodegradation of polypropylene microplastics by Bacillus pasteurii isolated from a gold mine tailing. Emerg. Contam. 2025, 11, 100397. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Hao, X.; Zhang, X.; Ma, Y.; Niu, Z. A novel marine bacterium Exiguobacterium marinum a-1 isolated from in situ plastisphere for degradation of additive-free polypropylene. Environ. Pollut. 2023, 336, 122390. [Google Scholar] [CrossRef]
- Andriani, D.; Apriana, A.Y.; Srikandace, Y.; Ratnaningrum, D.; Endah, E.S. Polypropylene film and beads biodegradation by Lysinibacillus macroides isolated from coastal area of Muara Angke in Jakarta-Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1017, 012019. [Google Scholar]
- Lv, S.; Wang, Q.; Li, Y.; Gu, L.; Hu, R.; Chen, Z.; Shao, Z. Biodegradation of polystyrene (PS) and polypropylene (PP) by deep-sea psychrophilic bacteria of Pseudoalteromonas in accompany with simultaneous release of microplastics and nanoplastics. Sci. Total Environ. 2024, 948, 174857. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, J.; Ruan, Y.; Cai, X.; Li, J.; Zhang, L.; Huang, H. Degradation of Polypropylene by the Pseudomonas aeruginosa Strains LICME WZH-4 and WGH-6. J. Polym. Environ. 2022, 30, 3949–3958. [Google Scholar] [CrossRef]
- Tabatabaei, F.; Mafigholami, R.; Moghimi, H.; Khoramipoor, S. Investigating biodegradation of polyethylene and polypropylene microplastics in Tehran DWTPs. Water Sci. Technol. 2023, 88, 2996–3008. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Wang, P.; Zhang, Z.; Zhang, L. A Polypropylene-Degrading Psychrobacillus Strain Isolated From a Landfill. J. Environ. Eng. Landsc. Manag. 2024, 32, 85–92. [Google Scholar] [CrossRef]
- Alshammari, A.M.; Virk, P.; Elsayim, R.; Al-Otaibi, N.R.; Al Sudairi, A.T.; Awad, M.; Al-Odayni, A.-B.M.; Fouad, D. A Consortium of Aspergillus Species Biodegrades Polypropylene Plastic. Available online: https://www.researchgate.net/publication/391377289_A_Consortium_of_Aspergillus_Species_Biodegrades_Polypropylene_Plastic (accessed on 19 May 2025).
- Tegariyanto, M.; Titah, H.; Pratikno, H. Biodegradation of polyethylene terephthalate (PET) plastics using a combination of Aspergillus niger and Trichoderma harzianum. IOP Conf. Ser. Earth Environ. Sci. 2024, 1414, 012028. [Google Scholar] [CrossRef]
- Swamy, T.; Nagarathna, S.; Reddy, P.; Nayak, A. Efficient biodegradation of Polyethylene terephthalate (PET) plastic by Gordonia sp. CN2K isolated from plastic contaminated environment. Ecotoxicol. Environ. Saf. 2024, 281, 116635. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; He, H.; Zhang, J.; Ma, G. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci. Total Environ. 2021, 767, 144345. [Google Scholar] [CrossRef]
- Maheswaran, B.; Al-Ansari, M.; Al-Humaid, L.; Raj, J.; Kim, W.; Karmegam, N.; Rafi, K. In vivo degradation of polyethylene terephthalate using microbial isolates from plastic polluted environment. Chemosphere 2023, 310, 136757. [Google Scholar] [CrossRef]
- Torena, P.; Alvarez-Cuenca, M.; Reza, M. Biodegradation of polyethylene terephthalate microplastics by bacterial communities from activated sludge. Can. J. Chem. Eng. 2021, 99, S69–S82. [Google Scholar] [CrossRef]
- Sarkhel, R.; Sengupta, S.; Das, P.; Bhowal, A. Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. J. Polym. Res. 2020, 27, 16. [Google Scholar] [CrossRef]
- Srivastava, P.; Saji, J.; Manickam, N. Biodegradation of polyethylene terephthalate (PET) by Brucella intermedia IITR130 and its proposed metabolic pathway. Biodegradation 2024, 35, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Ki, D.; Seo, H.; Park, J.; Jang, J.; Kim, K. Discovery and rational engineering of PET hydrolase with both mesophilic and thermophilic PET hydrolase properties. Nat. Commun. 2023, 14, 4556. [Google Scholar] [CrossRef]
- Tripathy, B.; Sahoo, P.; Sundaray, H.; Das, A. In-vitro biodegradation of discarded marine microplastics across the eastern coast of the Bay of Bengal, India using Exiguobacterium sp. Environ. Chem. Ecotoxicol. 2024, 6, 236–247. [Google Scholar] [CrossRef]
- Guo, W.; Duan, J.; Shi, Z.; Yu, X.; Shao, Z. Biodegradation of PET by the membrane-anchored PET esterase from the marine bacterium Rhodococcus pyridinivorans P23. Commun. Biol. 2023, 6, 1090. [Google Scholar] [CrossRef]
- Farzi, A.; Dehnad, A.; Fotouhi, A.F. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatal. Agric. Biotechnol. 2019, 17, 25–31. [Google Scholar] [CrossRef]
- Ribitsch, D.; Acero, E.; Greimel, K.; Eiteljoerg, I.; Trotscha, E.; Freddi, G.; Schwab, H.; Guebitz, G. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatal. Biotransform. 2012, 30, 2–9. [Google Scholar] [CrossRef]
- Billig, S.; Oeser, T.; Birkemeyer, C.; Zimmermann, W. Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl. Microbiol. Biotechnol. 2010, 87, 1753–1764. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Seo, H.; Hong, H.; Park, J.; Ki, D.; Kim, K. Characterization and Engineering of a Fungal Poly(ethylene terephthalate) Hydrolyzing Enzyme from Aspergillus fumigatiaffinis. ACS Catal. 2024, 14, 4108–4116. [Google Scholar] [CrossRef]
- Santos-Beneit, F.; Chen, L.; Bordel, S.; de la Flor, R.; García-Depraect, O.; Lebrero, R.; Rodriguez-Vega, S.; Muñoz, R.; Börner, R.; Börner, T. Screening Enzymes That Can Depolymerize Commercial Biodegradable Polymers: Heterologous Expression of Fusarium solani Cutinase in Escherichia coli. Microorganisms 2023, 11, 328. [Google Scholar] [CrossRef]
- Vázquez-Alcántara, L.; Oliart-Ros, R.; García-Bórquez, A.; Peña-Montes, C. Expression of a Cutinase of Moniliophthora roreri with Polyester and PET-Plastic Residues Degradation Activity. Microbiol. Spectr. 2021, 9, e0097621. [Google Scholar] [CrossRef]
- Carniel, A.; Valoni, É.; Nicomedes, J.; Gomes, A.; de Castro, A. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem. 2017, 59, 84–90. [Google Scholar] [CrossRef]
- Brinch-Pedersen, W.; Keller, M.; Dorau, R.; Paul, B.; Jensen, K.; Borch, K.; Westh, P. Discovery and Surface Charge Engineering of Fungal Cutinases for Enhanced Activity on Poly(ethylene terephthalate). ACS Sustain. Chem. Eng. 2024, 12, 7329–7337. [Google Scholar] [CrossRef]
- Allafi, A.R. The effect of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) into commercial bottled water in Kuwait. Acta Biomed. Atenei Parm. 2020, 91, e2020105. [Google Scholar] [CrossRef]
- Dhaka, V.; Singh, S.; Anil, A.G.; Sunil Kumar Naik, T.S.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P.C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800. [Google Scholar] [CrossRef]
- Havaei, M.; Akin, O.; Locaspi, A.; Varghese, R.; Minette, F.; Romers, E.; De Meester, S.; Van Geem, K. Beyond the Landfill: A critical review of techniques for End-of-Life Polyvinyl chloride (PVC) valorization. Waste Manag. 2025, 193, 105–134. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Sharma, B.; Shukla, P. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 2020, 17, 100567. [Google Scholar] [CrossRef]
- Veronelli, M.; Mauro, M.; Bresadola, S. Influence of thermal dehydrochlorination on the photooxidation kinetics of PVC samples. Polym. Degrad. Stab. 1999, 66, 349–357. [Google Scholar] [CrossRef]
- Kamo, T.; Kondo, Y.; Kodera, Y.; Sato, Y.; Kushiyama, S. Effects of solvent on degradation of poly(vinyl chloride). Polym. Degrad. Stab. 2003, 81, 187–196. [Google Scholar] [CrossRef]
- Whitney, P. A comparison of two methods for testing defined formulations of PVC for resistance to fungal colonisation with two methods for the assessment of their biodegradation. Int. Biodeterior. Biodegrad. 1996, 37, 205–213. [Google Scholar] [CrossRef]
- Webb, J.; Nixon, M.; Eastwood, I.; Greenhalgh, M.; Robson, G.; Handley, P. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl. Environ. Microbiol. 2000, 66, 3194–3200. [Google Scholar] [CrossRef]
- Vivi, V.; Martins-Franchetti, S.; Attili-Angelis, D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019, 64, 1–7. [Google Scholar] [CrossRef]
- Sumathi, T.; Viswanath, B.; Sri Lakshmi, A.; SaiGopal, D.V.R. Production of Laccase by Cochliobolus sp. Isolated from Plastic Dumped Soils and Their Ability to Degrade Low Molecular Weight PVC. Biochem. Res. Int. 2016, 2016, 9519527. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.; Sucharitha, K.; Godi, S. Biodegradation of plastic polymers by fungi: A brief review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Amobonye, A.E.; Bhagwat, P.; Singh, S.; Pillai, S. Chapter 10—Biodegradability of Polyvinyl chloride. In Biodegradability of Conventional Plastics; Sarkar, A., Sharma, B., Shekhar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–220. [Google Scholar] [CrossRef]
- Arraq, R.R.; Hadi, A.G.; Ahmed, D.S.; El-Hiti, G.A.; Kariuki, B.M.; Husain, A.A.; Bufaroosha, M.; Yousif, E. Enhancement of Photostabilization of Poly(Vinyl Chloride) in the Presence of Tin–Cephalexin Complexes. Polymers 2023, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.-Y.; Chen, Z.; Chen, J.; Yu, H.; Zhou, X.; Criddle, C.S.; Wu, W.-M.; Zhang, Y. Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 2020, 145, 106106. [Google Scholar] [CrossRef] [PubMed]
- Bakir, A.; Rowland, S.; Thompson, R. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ. Pollut. 2014, 185, 16–23. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, J.; Yusuf, A.; Wang, Y.; Jin, H.; Zhang, X.; Liu, Y.; Wang, Y.; Yang, G.; He, J. A critical review on microbial degradation of petroleum-based plastics: Quantitatively effects of chemical addition in cultivation media on biodegradation efficiency. Biodegradation 2022, 33, 1–16. [Google Scholar] [CrossRef]
- Xing, R.-Z.; Zhao, Z.-Q.; Zhao, W.-Q.; Chen, Z.; Chen, J.-F.; Zhou, S.-G. Biodegradation of Polystyrene by Geobacillus stearothermophilus. Huan Jing Ke Xue 2021, 42, 3056–3062. [Google Scholar] [CrossRef]
- Sushmita, K.; Madras, G.; Bose, S. The journey of polycarbonate-based composites towards suppressing electromagnetic radiation. Funct. Compos. Mater. 2021, 2, 13. [Google Scholar] [CrossRef]
- Kumar Maurya, A.; Kumar, S.; Singh, M.; Manik, G. Polyamide fiber reinforced polymeric composites: A short review. Mater. Today Proc. 2023, 80, 98–103. [Google Scholar] [CrossRef]
- Karrech, A.; Zhou, H. A systematic review on the recycling of polyurethane products from offshore applications. Circ. Econ. 2025, 4, 100129. [Google Scholar] [CrossRef]
- Shah, A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Fukuyama, S.; Kanzaki, N.; Kanagawa, K.; Negoro, S.; Okada, H. High homology between 6-aminohexanoate-cyclic-dimer hydrolases of Flavobacterium and Pseudomonas strains. J. Bacteriol. 1989, 171, 3187–3191. [Google Scholar] [CrossRef]
- Negoro, S.; Kakudo, S.; Urabe, I.; Okada, H. A New nylon oligomer degradation gene (nylc) on plasmid pOAD2 from a Flavobacterium sp. J. Bacteriol. 1992, 174, 7948–7953. [Google Scholar] [CrossRef]
- Kanagawa, K.; Negoro, S.; Takada, N.; Okada, H. Plasmid dependence of Pseudomonas sp. strain NK87 enzymes that degrade 6-aminohexanoate-cyclic dimer. J. Bacteriol. 1989, 171, 3181–3186. [Google Scholar] [CrossRef]
- Gatz-Schrupp, J.; Deckard, P.; Hufford, B.; Ly, S.; Tupa, P.; Masuda, H. Isolation and genomic analysis of 11-aminoundecanoic acid-degrading bacterium Pseudomonas sp. JG-B from nylon 11 enrichment culture. J. Genom. 2020, 8, 16–20. [Google Scholar] [CrossRef]
- Arefian, M.; Tahmourespour, A.; Zia, M. Polycarbonate biodegradation by newly isolated Bacillus strains. Arch. Environ. Prot. 2020, 46, 14–20. [Google Scholar] [CrossRef]
- Antonakou, E.V.; Achilias, D.S.; Antonakou, E.V.; Achilias, D.S. Recent Advances in Polycarbonate Recycling: A Review of Degradation Methods and Their Mechanisms. Waste Biomass Valorization 2012, 4, 9–21. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Antonakou, E.V.; Achilias, D.S. Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. J. Anal. Appl. Pyrolysis 2018, 132, 123–133. [Google Scholar] [CrossRef]
- Pérez-Lara, L.; Vargas-Suárez, M.; López-Castillo, N.; Cruz-Gómez, M.; Loza-Tavera, H. Preliminary study on the biodegradation of adipate/phthalate polyester polyurethanes of commercial-type by Alicycliphilus sp BQ8. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Rafiemanzelat, F.; Jafari, M.; Emtiazi, G. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil. Appl. Biochem. Biotechnol. 2015, 177, 842–860. [Google Scholar] [CrossRef]
- Gui, Z.; Liu, G.; Liu, X.; Cai, R.; Liu, R.; Sun, C. A Deep-Sea Bacterium Is Capable of Degrading Polyurethane. Microbiol. Spectr. 2023, 11, e0007323. [Google Scholar] [CrossRef]
- Maestri, C.; Plancher, L.; Duthoit, A.; Hebert, R.; Di Martino, P. Fungal Biodegradation of Polyurethanes. J. Fungi 2023, 9, 760. [Google Scholar] [CrossRef]
- Ciuffi, B.; Fratini, E.; Rosi, L. Plastic pretreatment: The key for efficient enzymatic and biodegradation processes. Polym. Degrad. Stab. 2024, 222, 110698. [Google Scholar] [CrossRef]
- Vargas-Suárez, M.; Savín-Gámez, A.; Domínguez-Malfavón, L.; Sánchez-Reyes, A.; Quirasco-Baruch, M.; Loza-Tavera, H. Exploring the polyurethanolytic activity and microbial composition of landfill microbial communities. Appl. Microbiol. Biotechnol. 2021, 105, 7969–7980. [Google Scholar] [CrossRef]
- Shah, A.; Hasan, F.; Akhter, J.; Hameed, A.; Ahmed, S. Degradation of polyurethane by novel bacterial consortium isolated from soil. Ann. Microbiol. 2008, 58, 381–386. [Google Scholar] [CrossRef]
- Vargas-Suárez, M.; Fernández-Cruz, V.; Loza-Tavera, H. Biodegradation of polyacrylic and polyester polyurethane coatings by enriched microbial communities. Appl. Microbiol. Biotechnol. 2019, 103, 3225–3236. [Google Scholar] [CrossRef]
- Shah, Z.; Hasan, F.; Krumholz, L.; Aktas, D.; Shah, A. Degradation of polyester polyurethane by newly isolated Pseudomonas aeruginosa strain MZA-85 and analysis of degradation products by GC MS. Int. Biodeterior. Biodegrad. 2013, 77, 114–122. [Google Scholar] [CrossRef]
- Park, W.; Hwangbo, M.; Chu, K. Plastisphere and microorganisms involved in polyurethane biodegradation. Sci. Total Environ. 2023, 886, 163932. [Google Scholar] [CrossRef]
- Curia, R.; Milani, M.; Didenko, L.; Avtandilov, G.; Shevlyagina, N.; Smirnova, T. Beyond the biodestruction of polyurethane: S. aureus uptake of nanoparticles is a challenge for toxicology. Microsc. Adv. Sci. Res. Educ. 2014, 1, 16–23. [Google Scholar]
- Salgado, C.A.; Pereira Vidigal, P.M.; Dantas Vanetti, M.C. Biodegradation of polyurethanes by Staphylococcus warneri and by microbial co-culture. Chemosphere 2024, 359, 142169. [Google Scholar] [CrossRef]
- Najam, M.; Javaid, S.; Iram, S.; Pasertsakoun, K.; Oláh, M.; Székacs, A.; Aleksza, L. Microbial Biodegradation of Synthetic Polyethylene and Polyurethane Polymers by Pedospheric Microbes: Towards Sustainable Environmental Management. Polymers 2025, 17, 169. [Google Scholar] [CrossRef]
- Khruengsai, S.; Sripahco, T.; Pripdeevech, P. Biodegradation of Polyester Polyurethane by Embarria clematidis. Front. Microbiol. 2022, 13, 874842. [Google Scholar] [CrossRef]
- Russell, J.; Huang, J.; Anand, P.; Kucera, K.; Sandoval, A.; Dantzler, K.; Hickman, D.; Jee, J.; Kimovec, F.; Koppstein, D.; et al. Biodegradation of Polyester Polyurethane by Endophytic Fungi. Appl. Environ. Microbiol. 2011, 77, 6076–6084. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Xu, B.; Xu, A.; Cao, S.; Wei, R.; Zhou, J.; Jiang, M.; Dong, W. Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. Chemosphere 2022, 304, 135263. [Google Scholar] [CrossRef]
- Yoon, M.G.; Jeon, H.J.; Kim, M.N. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J. Bioremed. Biodegrad. 2012, 3, 1–8. [Google Scholar]
- Perz, V.; Baumschlager, A.; Bleymaier, K.; Zitzenbacher, S.; Hromic, A.; Steinkellner, G.; Pairitsch, A.; Lyskowski, A.; Gruber, K.; Sinkel, C.; et al. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases. Biotechnol. Bioeng. 2016, 113, 1024–1034. [Google Scholar] [CrossRef]
- Wei, R.; Oeser, T.; Then, J.; Kühn, N.; Barth, M.; Schmidt, J.; Zimmermann, W. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express 2014, 4, 44. [Google Scholar] [CrossRef]
- Janatunaim, R.Z.; Fibriani, A. Construction and Cloning of Plastic-degrading Recombinant Enzymes (MHETase). Recent Pat. Biotechnol. 2020, 14, 229–234. [Google Scholar] [CrossRef]
- Di Rocco, G.; Taunt, H.; Berto, M.; Jackson, H.; Piccinini, D.; Carletti, A.; Scurani, G.; Braidi, N.; Purton, S. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Sci. Rep. 2023, 13, 10028. [Google Scholar] [CrossRef]
- Qi, X.; Ma, Y.; Chang, H.; Li, B.; Ding, M.; Yuan, Y. Evaluation of PET Degradation Using Artificial Microbial Consortia. Front. Microbiol. 2021, 12, 778828. [Google Scholar] [CrossRef]
- Brandenberg, O.; Schubert, O.; Kruglyak, L. Towards synthetic PETtrophy: Engineering Pseudomonas putida for concurrent polyethylene terephthalate (PET) monomer metabolism and PET hydrolase expression. Microb. Cell Factories 2022, 21, 119. [Google Scholar] [CrossRef]
- Sabellico, G.; Baggetta, A.; Sandrucci, E.; Zanellato, G.; Martinelli, A.; Montanari, A.; Bianchi, M. Oxidative deterioration of polypropylene by redox mediators and yeast expressing a fungal recombinant laccase. Int. Biodeterior. Biodegrad. 2025, 196, 105947. [Google Scholar] [CrossRef]
- Liu, M.; Yang, S.; Long, L.; Cao, Y.; Ding, S. Engineering a Chimeric Lipase-cutinase (Lip-Cut) for Efficient Enzymatic Deinking of Waste Paper. Bioresources 2018, 13, 981–996. [Google Scholar] [CrossRef]
- Blasberg, A.; Christian, B.; Goyal, A.; Vacca, J.; Wells, J. Inserting Ideonella sakaiensis genes into chassis Comamonas testosteroni to create bacterial super-degrader for plastic waste reduction. BioTreks 2024, 9, 249–259. Available online: https://biotreks.org/wp-content/uploads/2024/10/e202426.pdf (accessed on 12 May 2025).
- Yan, F.; Wei, R.; Cui, Q.; Bornscheuer, U.; Liu, Y. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb. Biotechnol. 2021, 14, 374–385. [Google Scholar] [CrossRef]
- Schmidt, J.; Wei, R.; Oeser, T.; Silva, L.; Breite, D.; Schulze, A.; Zimmermann, W. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases. Polymers 2017, 9, 65. [Google Scholar] [CrossRef]
- Nomura, N.; Shigeno-Akutsu, Y.; Nakajima-Kambe, T.; Nakahara, T. Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. J. Ferment. Bioeng. 1998, 86, 339–345. [Google Scholar] [CrossRef]
- Sharma, S.; Pathania, S.; Bhagta, S.; Kaushal, N.; Bhardwaj, S.; Bhatia, R.K.; Walia, A. Microbial remediation of polluted environment by using recombinant E. coli: A review. Biotechnol. Environ. 2024, 1, 8. [Google Scholar] [CrossRef]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M.N. Genetically engineered microorganisms for environmental remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef]
- Ngaba, M.J.Y.; Rennenberg, H.; Hu, B. Insights Into the Efficiency and Health Impacts of Emerging Microplastic Bioremediation Approaches. Glob. Chang. Biol. 2025, 31, e70226. [Google Scholar] [CrossRef]
- Wesseler, J.; Kleter, G.; Meulenbroek, M.; Purnhagen, K.P. EU regulation of genetically modified microorganisms in light of new policy developments: Possible implications for EU bioeconomy investments. Appl. Econ. Perspect. Policy 2023, 45, 839–859. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Directive 2001/18/EC on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC. 2001, pp. 1–39. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32001L0018 (accessed on 20 July 2025).
- Judgment of the Court in Case C-528/16 EUR-Lex. 25 July 2018. Available online: https://curia.europa.eu/juris/document/document.jsf?text=&docid=204387&pageIndex=0&doclang=EN&mode=lst&dir=&occ=first&part=1&cid=116151 (accessed on 20 July 2025).
- European Parliament and of the Council. Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the Contained Use of Genetically Modified Micro-Organisms. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0041 (accessed on 20 July 2025).
- Toxic Substances Control Act (TSCA). Biotechnology Regulations, 40 CFR Part 725. 1997. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-R/part-725 (accessed on 20 July 2025).
- Mrigwani, A.; Pitaliya, M.; Kaur, H.; Kasilingam, B.; Thakur, B.; Guptasarma, P. Rational mutagenesis of Thermobifida fusca cutinase to modulate the enzymatic degradation of polyethylene terephthalate. Biotechnol. Bioeng. 2022, 120, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, M.; Kawakami, N.; Tomizawa, A.; Miyamoto, K. Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Sci. Rep. 2019, 9, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Knott, B.C.; Erickson, E.; Allen, M.D.; Gado, J.E.; Graham, R.; Kearns, F.L.; Pardo, I.; Topuzlu, E.; Anderson, J.J.; Austin, H.P.; et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. USA 2020, 117, 25476–25485. [Google Scholar] [CrossRef]
- Gamerith, C.; Acero, E.H.; Pellis, A.; Ortner, A.; Vielnascher, R.; Luschnig, D.; Zartl, B.; Haernvall, K.; Zitzenbacher, S.; Strohmeier, G.; et al. Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polym. Degrad. Stab. 2016, 132, 69–77. [Google Scholar] [CrossRef]
- Kong, D.; Zhang, H.; Yuan, Y.; Wu, J.; Liu, Z.; Chen, S.; Zhang, F.; Wang, L. Enhanced biodegradation activity toward polyethylene by fusion protein of anchor peptide and Streptomyces sp. strain K30 latex clearing protein. Int. J. Biol. Macromol. 2024, 264, 130378. [Google Scholar] [CrossRef] [PubMed]
Group | Strain | PE Type | Growth Condition | Degradation (%) | Reference |
---|---|---|---|---|---|
Bacteria | Bacillus cereus SHBF2 | PE | PE: 2 g/L, 30 °C, 60 days | 6.87 ± 0.92 | [59] |
Bacteria | Bacillus firmus NCTC 10335 | HDPE | PE: 0.5 g/L, 30 °C, 30 days | 15.3 | [60] |
Bacteria | Bacillus gottheilii | PE | PE: 0.5 g/0.27 L, 29 °C, 40 days | 6.2 | [61] |
Bacteria | Bacillus safensis BS-10L | LDPE (powder 400 µm) | PE: 1%, 30 °C, 30-90 days | 13.40 ± 0.013 to 27.78 ± 0.014 | [62] |
Bacteria | Comamonas testosteroni NCIMB 8955 | HDPE | PE: 0.5 g/L, 30 °C, 8 days | 12.29 | [60] |
Bacteria | Exiguobacterium sp. HSK30 | LDPE | PE: films (2 × 2 cm), 30 °C, 120 days | 16.89 ± 1.02 | [63] |
Bacteria | Gordonia alkanivorans PBM1 | LDPE | PE: 3 g/L (films 3 × 3 cm), 30 °C, 35 days | 0.66 ± 0.508 | [64] |
Bacteria | Gordonia alkanivorans PSW1 | LDPE | PE: 3 g/L (films 3 × 3 cm), 30 °C, 35 days | 0.88 ± 0.658 | [64] |
Bacteria | Micrococcus flavus RS124 | HDPE (sheet; thickness 0.01 mm) | PE: film 1 × 1 cm, 30 °C, 30 days | 1.8 | [65] |
Bacteria | Morganella morganii PQ533186 | LDPE (from commercial plastic bags) | PE: films 5 × 5 cm, 35 °C, 120 days | 42.18 | [66] |
Bacteria | Paenibacillus macquariensis NCTC 10419 | HDPE | PE: 0.5 g/L, 30 °C, 30 days | 13 | [60] |
Bacteria | Phormidium lucidum | PE (sheet; thickness 20 µm) | PE: films 1 × 1 cm, 24 °C, 42 days | ~30 | [56] |
Bacteria | Pseudalkalibacillus sp. MQ-1 | PE | PE: 2 × 1.5 cm sheet, 30 °C, 30 days | 6.377 ± 1.151 | [67] |
Bacteria | Pseudomonas balerica PDI-17 | PE | PE: films 2 × 2 cm, 30 °C, 30 days | 4.25–19.9 | [54] |
Bacteria | Pseudomonas plecoglossicida SYp2123 | LDPE beads (>500 µm) | PE: 20 g/L, 30 °C, 3 weeks | n.d. | [68] |
Bacteria | Stenotrophomonas sp. | LDPE | PE: film 3 × 3 cm, 31 °C, 90 days | 10.15 ± 1.04 | [69] |
Consortium of bacteria | Enterobacter sp. nov. bt DSCE01 + Enterobacter cloacae nov. bt DSCE02 + Pseudomonas aeruginosa nov. bt DSCE-CD03 | LDPE | PE: film 3 × 3 cm, 37 °C, 160 days | 64.25 ± 2 | [70] |
Cyanobacteria | Nostoc carneum | PE (sheet; thickness 20 µm) | PE: films 1 × 1 cm, 24 °C, 6 weeks | 27 | [44] |
Cyanobacteria | Oscillatoria subbrevis | PE (sheet; thickness 20 µm) | PE: films 1 × 1 cm, 24 °C, 42 days | ~30 | [45] |
Fungus | Aspergillus niger | LDPE | PE: not defined, 35 °C, 48 h | 55 | [48] |
Fungus | Aspergillus sp. AQ3A | LDPE microplastics 500–63 µm | PE: 1 g/L, 28 °C, 28 days | 47 | [49] |
Fungus | Cladosporium sphaerospermum | LDPE | PE: film 2 × 2 cm, 35 °C, 7 days | 15.23 | [55] |
Fungus | Cordyceps sp. WICC F61 | LDPE (sheet; thickness 2.3 mm) | PE: films 1 × 1 cm, 36 °C, 30 days | 5.56 | [56] |
Fungus | Gongronella sp. WICC F60 | LDPE (sheet; thickness 2.3 mm) | PE: films 1 × 1 cm, 36 °C, 30 days | 1.07 | [56] |
Fungus | Rhizopus arrhizus SLNEA1 | LDPE (sheets from commercial bags) | PE: 0.2 g/0.15 L (films), 25 °C, 90 days | 23.77–29.74 | [63] |
Group | Strain | PP Type | Growth Condition | Degradation (%) | Reference |
---|---|---|---|---|---|
Bacterium | Bacillus cereus | PP (microparticles) | PP: 1 g/L, 28 days | 47.5 ± 0.5/35.5 ± 0.5 | [79] |
Bacterium | Bacillus cereus SHBF2 | PP | PP: 2 g/L, 30 °C, 60 days | 6.77 ± 0.87 | [59] |
Bacterium | Bacillus gottheilii | PP | PP: 0.5 g/0.27 L, 29 °C, 40 days | 3.6 | [61] |
Bacterium | Bacillus paramycoides | PP (<250 nm microplastics) | PP: 0.5 g, 28–30 °C, 21 days | 78.99 ± 0.005 | [76] |
Bacterium | Bacillus pasteurii | PP (microplastics) | PP: 1% (w/w), 30 days | 20.95–23.22 | [80] |
Bacterium | Bacillus tropicus | PP (microparticles) | PP: 1 g/L, 28 days | 51.5 ± 0.5 | [79] |
Bacterium | Brucella pseudintermedia | PP (microparticles) | PP: 1 g/L, 28 days | 28.5 ± 0.5 | [79] |
Bacterium | Exiguobacterium marinum a-1 | PP | PP film (2 cm × 1.2 cm, PP30-FM-000125, 0.025 mm in thickness), marine medium, static, 25 °C, 80 days | 9.2 | [81] |
Bacterium | Lysinibacillus macroides | PP beads (0.2–0.25 cm) and sheets (0.025 mm) | PP: beads 10% (w/v), films (2 × 2 cm), 30 °C, 50 days | 1.33–2.93 | [82] |
Bacterium | Pseudoalteromonas lipolytica STM3 | PP | PP films (1 cm × 1 cm), 28 °C, seawater medium, 30 days | 1.3 | [83] |
Bacterium | Pseudoalteromonas tetraodonis SPAM4 | PP | PP films (1 cm × 1 cm), 28 °C, seawater medium, 30 days | 0.7 | [83] |
Bacterium | Pseudomonas aeruginosa | PP particles (Mn = 4000 ± 500) | PP: 10 g/L, 30 °C, 30 days | 9.35 ± 2.22–17.2 ± 1.56 | [84] |
Bacterium | Pseudomonas protegens | PP | PP: 0.92 g cm−3, minimal salt medium, 30 °C, weeks | 25.6–32.6 | [85] |
Bacterium | Psychrobacillus sp. LICME-ZWZR-10 | PP (particles 850 µm) | PP: 5%, 20 °C, 30 days | 9.0 ± 0.40 | [86] |
Bacterium | Stenotrophomonas acidaminiphila | PP (microparticles) | PP: 1 g/L, 28 days | 33 ± 1 | [79] |
Consortium of Bacterium | Enterobacter sp. nov. bt DSCE01 + Enterobacter cloacae nov. bt DSCE02 + Pseudomonas aeruginosa nov. bt DSCE-CD03 | PP | PP: film 3 × 3 cm, 37 °C, 160 days | 63 ± 2 | [70] |
Consortium of Fungus | Aspergillus niger + Aspergillus flavus + Aspergillus oryzae | PP | Solid state fermentation, 25–30 °C, 90 days | 16.66–23.3 | [87] |
Group | Strain | PET Type | Growth Condition | Degradation (%) | Reference |
---|---|---|---|---|---|
Bacterium | Bacillus cereus | PET granules | PET: 0.5 g/0.27 L, mineral medium, 37 °C, 40 days (mineral) | 6.6 | [61] |
Bacterium | Bacillus gottheilii | PET granules | PET: 0.5 g/0.27 L, mineral medium, 29 °C, 40 days (mineral) | 3 | [61] |
Bacterium | Brucella intermedia IITR130 | PET sheet | PET: (sheet of 0.1 mm thickness), mineral medium, 30 °C, 60 days (mineral) | 26 | [94] |
Bacterium | Cryptosporangium aurantiacum | PcPET (powder) | PET: 15 mg/ml; enzymatic degradation, 55 °C, pH 8, 12 h (enzymatic) | 94.1 | [95] |
Bacterium | Exiguobacterium sp. (ON627837) | PET (microplastics) | Mineral medium, 37 °C, 30 days (mineral) | 4 | [96] |
Bacterium | Gordonia sp. CN2K | PET (microplastic < 5 mm) | Mineral salts medium (MSM), 30 °C, 45 days (mineral) | 40.43 | [89] |
Bacterium | Piscinibacter sakaiensis | PET (film) | Mineral medium, 30 °C, 6 weeks (mineral) | n.d. | [39] |
Bacterium | Rhodococcus pyridinivorans P23 | PET | Mineral salts medium, 30 °C, flask culture, 5 weeks (mineral) | 4.28 | [97] |
Bacterium | Streptomyces sp. | PET (microparticles 500–212 µm) | Rich medium (LB + 1% PCL), 28 °C, 12 days (rich) | n.d. | [98] |
Bacterium | Thermobifida alba | PET | Enzymatic degradation (cutinase), PET surface hydrolysis tested (enzymatic) | n.d. | [99] |
Bacterium | Thermobifida fusca | PET granulate (particle size 4–8 mm) | Enzymatic degradation (purified cutinase TfH), 55 °C, PET with 10% crystallinity, 3 weeks (enzymatic) | 50 | [100] |
Bacterium | Vibrio sp. PD6 | PET (waste plastic bottles) | Mineral medium, 35 °C, pH 7, 6 weeks (mineral) | 35 | [93] |
Consortium of bacterium | Microbial consortium (Bacillus cereus SEHD031MH + Agromyces mediolanus PNP3) | PET (microplastics) | Mineral medium, 30 °C, pH 7–7.5, 168 days (mineral) | 17 | [92] |
Consortium of bacterium and fungus | Microbial consortium (Sarcina aurantiaca TB3, Bacillus subtilis TB8, Aspergillus flavus STF1, Aspergillus niger STF2) | PET (packaging plastic) | Mineral medium, 37 °C, 60 days (mineral) | 28.78 | [91] |
Fungus | Aspergillus fumigatiaffinms | PcPET | Enzymatic degradation, PET film, 60 °C, 12 days (enzymatic) | n.d. | [101] |
Fungus | Aspergillus niger and Trichoderma harzianum | PET (thickness of 0.3 mm) | Rich medium, room temperature, 30 days (rich) | 1.8 | [88] |
Fungus | Aspergillus sp. | PET (waste plastic bottles) | Mineral medium, 35 °C, pH 7, 6 weeks (mineral) | 22 | [93] |
Fungus | Fusarium solani pisi | PET (powder) | Enzymatic degradation (cutinase expressed in E. coli BL21), optimized conditions (enzymatic) | n.d. | [102] |
Fungus | Moniliophthora roreri | PET | Mineral medium, pH 8, 40 °C, 21 days (mineral) | 31 | [103] |
Fungus | Penicillium funiculosum | PET water bottles (0.1 mm thickness) | Rich medium, 30 °C, 84 days (rich) | n.d. | [104] |
Fungus | Thermocarpiscus australiensis | PET | Enzymatic degradation (enzymatic) | n.d. | [105] |
Yeast | Candida antarctica | PET water bottles (0.1 mm thickness) | Enzymatic degradation, 60 °C, 21 days (enzymatic) | 0.4 | [104] |
Group | Strain | PVC Type | Growth Conditions | Degradation (%) | References |
---|---|---|---|---|---|
Fungus | Aspergillus niger (ATCC 6275) | PVC thin films (2% w/v) | Liquid or solid media; ~28–30 °C; 60 days | 10 | [49,112] |
Fungus | Aureobasidium pullulans | PVC sheets (0.5 mm thick) | Minimal liquid or solid medium; 25–28 °C, colonization was observed between 25–40 weeks | n.d. | [113] |
Fungus | Chaetomium globosum (ATCC 16021) | PVC films (40–50 μm) | PDA medium; ~25–30 °C | n.d. | [114] |
Fungus | Cochliobolus sp | PVC | PVC: 3 g/100 ml, Czapek Dox Agar; 30 °C; solid medium; incubation for weeks to 1 year | n.d. | [115] |
Fungus | Paecilomyces variotii CBS 62866 | PVC | Grown on PDA; ~28–30 °C; weeks | n.d. | [112] |
Fungus | Penicillium funiculosum ATCC 9644 | PVC | Grown on PDA or similar; ~28–30 °C; weeks | n.d. | [112] |
Fungus | Phanerochaete chrysosporium | PVC thin films (2% w/v) | High O2, solid/liquid medium; ~28–30 °C; typical incubation: weeks | n.d. | [49] |
Fungus | Trichoderma viride ATCC 13631 | PVC | Grown on PDA; ~28–30 °C; weeks | n.d. | [112] |
Yeast | Kluyveromyces sp. | PVC | YPD medium; ~25 °C, colonization was observed after 80 weeks | n.d. | [116] |
Yeast | Rhodotorula aurantiaca | PVC | Grown on yeast media; ~25 °C, colonization was observed after 80 weeks | n.d. | [116] |
Group | Strain | PS Type | Growth Conditions | Degradation (%) | Reference |
---|---|---|---|---|---|
Bacterium | Bacillus cereus | PS granules (250 μm) | 37 °C; minimal medium, 40 days | 7.4 | [61] |
Bacterium | Bacillus cereus SHBF2 | PS microplastic powder (49.67 µm) | Grown in nutrient rich medium; ~30 °C; 30 days | 5.94 ± 0.94 | [59] |
Bacterium | Bacillus gottheilii | PS granules (250 μm) | 37 °C; minimal medium, 40 days | 5.8 | [61] |
Bacterium | Geobacillus stearothermophilus FAFUA011 | PS | Thermophilic: 55–65 °C; minimal medium | 4.2 | [122] |
Bacterium | Pseudoalteromonas lipolytica STM3 | PS films | Marine medium; ~25 °C; 60 days | 3.9 | [83] |
Bacterium | Pseudoalteromonas tetraodonis SPAM4 | PS films | Marine medium; ~25 °C; 60 days | 2.8 | [83] |
Bacterium | Rhodococcus ruber sp. C208 | PS | Minimal medium; ~30 °C | n.d. | [121] |
Group | Strain | Plastic Type | Growth Conditions | Degradation (%) | References |
---|---|---|---|---|---|
Bacterium | Flavobacterium sp. | PA | Minimal medium with polyurea as the sole N source; ~30 °C; 14 days | n.d. | [127,128] |
Bacterium | Pseudomonas sp. | PA | Minimal medium with polyurea as the N source; ~30 °C; 40 days | n.d. | [127,129,130] |
Bacterium | Bacillus sp. | PC | Minimal medium; 30–37 °C; 1 month | 4–8 | [131] |
Bacterium | Pseudomonas sp. | PC | Minimal medium; 30–37 °C 60 days | 5–10 | [126] |
Fungus | Penicillium sp. | PC | Potato Dextrose Broth; ~28 °C, 30 days | 9.6 | [138] |
Bacterium | Alicycliphilus sp. | PUR | Minimal medium with PUR 3% (w/v); ~30 °C; 6 days | n.d. | [134] |
Bacterium | Bacillus amyloliquefaciens M3 | PUR | Grown on PUR foam in liquid medium; ~30 °C; 33 days | 30–40 | [135] |
Bacterium | Bacillus sp. (marine) | PUR | Marine broth with PUR; ~25 °C; 4 days | n.d. | [136] |
Bacterium | Comamonas sp. | PUR | Liquid medium with PUR as a carbon source; ~30 °C, 21 days | n.d. | [139] |
Bacterium | Comamonas acidovorans | PUR | Minimal medium with PUR and PLA; ~30 °C; 7 days | n.d. | [116] |
Bacterium | Corynebacterium sp. | PUR | Grown on PUR-containing medium; ~30 °C; 48 h | n.d. | [140] |
Bacterium | Micrococcus sp. | PUR | Grown on PUR-containing media; ~30 °C, 6 months | n.d. | [135,141] |
Bacterium | Pseudomonas aeruginosa ATCC 13388 | PUR | Liquid medium with PUR film; ~30 °C; 4 weeks | n.d. | [142] |
Bacterium | Pseudomonas sp. PHC1 | PUR | Liquid medium with Impranil or solid PUR; ~28–30 °C; 7 days | n.d. | [143] |
Bacterium | Staphylococcus aureus | PUR | Minimal medium with PUR; ~30 °C; 45 days | n.d. | [144] |
Bacterium | Staphylococcus warneri | PUR | Co-culture with PUR and Impranil; ~30 °C; 6 days | n.d. | [145] |
Fungus | Aspergillus niger | PUR | Solid or liquid media with PUR; ~28–30 °C; >30 days | n.d. | [116,146] |
Fungus | Candida rugosa and Candida ethanolica | PUR | YPD or minimal medium with PUR; ~25–30 °C; 30 days | n.d. | [116] |
Fungus | Cladosporium sp. P7 | PUR | Liquid culture with Impranil; ~28–30 °C; 7 days | 94.5 | [143] |
Fungus | Embarria clematidis | PUR | Solid or liquid culture with PUR; ~28–30 °C; 2 weeks | n.d. | [147] |
Fungus | Fusarium solani | PUR | Minimal medium with PUR foam; ~30 °C. 15 days | 36.8 | [137] |
Fungus | Pestalotiopsis microspora | PUR | Grown on PUR as sole C source; aerobic/anaerobic; ~28–30 °C; 2 weeks | n.d. | [148] |
Insect + microbiota | Tenebrio molitor (larvae) | PUR | Fed with PUR foam; incubation at 25–28 °C; 35 days | 67 | [141,149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Getino, L.; Revilla-Gómez, J.A.; Ariza-Carmona, L.M.; Thijs, S.; Didierjean, C.; Chamizo-Ampudia, A. Biodegradation of Petrochemical Plastics by Microorganisms: Toward Sustainable Solutions for Plastic Pollution. Bacteria 2025, 4, 44. https://doi.org/10.3390/bacteria4030044
Getino L, Revilla-Gómez JA, Ariza-Carmona LM, Thijs S, Didierjean C, Chamizo-Ampudia A. Biodegradation of Petrochemical Plastics by Microorganisms: Toward Sustainable Solutions for Plastic Pollution. Bacteria. 2025; 4(3):44. https://doi.org/10.3390/bacteria4030044
Chicago/Turabian StyleGetino, Luis, José Antonio Revilla-Gómez, Luisa María Ariza-Carmona, Sofie Thijs, Claude Didierjean, and Alejandro Chamizo-Ampudia. 2025. "Biodegradation of Petrochemical Plastics by Microorganisms: Toward Sustainable Solutions for Plastic Pollution" Bacteria 4, no. 3: 44. https://doi.org/10.3390/bacteria4030044
APA StyleGetino, L., Revilla-Gómez, J. A., Ariza-Carmona, L. M., Thijs, S., Didierjean, C., & Chamizo-Ampudia, A. (2025). Biodegradation of Petrochemical Plastics by Microorganisms: Toward Sustainable Solutions for Plastic Pollution. Bacteria, 4(3), 44. https://doi.org/10.3390/bacteria4030044