Prevalence, Antimicrobial Resistance Profiles, and Risk Factors Analysis of Campylobacter spp. from Dogs in Kelantan, Malaysia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Design
2.2. Sample Collection
2.3. Bacterial Isolation and Identification
2.4. Polymerase Chain Reaction (PCR) for the Molecular Confirmation of Campylobacter
2.5. Risk Factor Analysis
2.6. Antimicrobial Susceptibility Testing
2.7. Determination of Multiple Antimicrobial Resistance (MAR) Index
2.8. Statistical Analysis
3. Results
3.1. Occurrence of Campylobacter in Dogs
3.2. Antimicrobial Resistance Profile
3.3. Multiple Antimicrobial Resistance Indices of Campylobacter spp. from Dogs
3.4. Potential Risk Factors Associated with the Prevalence of Campylobacter spp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Hakeem, W.G.; Fathima, S.; Shanmugasundaram, R.; Selvaraj, R.K. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022, 10, 2134. [Google Scholar] [CrossRef] [PubMed]
- Sałamaszyńska-Guz, A.; Murawska, M.; Bącal, P.; Ostrowska, A.; Kwiecień, E.; Stefańska, I.; Douthwaite, S. Increased Motility in Campylobacter jejuni and Changes in Its Virulence, Fitness, and Morphology Following Protein Expression on Ribosomes with Altered RsmA Methylation. Int. J. Mol. Sci. 2024, 25, 9797. [Google Scholar] [CrossRef]
- Thépault, A.; Rose, V.; Queguiner, M.; Chemaly, M.; Rivoal, K. Dogs and Cats: Reservoirs for Highly Diverse Campylobacter jejuni and a Potential Source of Human Exposure. Animals 2020, 10, 838. [Google Scholar] [CrossRef]
- Ghssein, G.; Barakat, R.; Nehme, N.; Awada, R.; Hassan, H.F. Fecal prevalence of Campylobacter spp. in house dogs in Lebanon: A pilot study. Vet. World 2023, 16, 2250–2255. [Google Scholar] [CrossRef]
- Ibrahim, J.N.; Eghnatios, E.; El Roz, A.; Fardoun, T.; Ghssein, G. Prevalence, antimicrobial resistance and risk factors for campylobacteriosis in Lebanon. J. Infect. Dev. Ctries 2019, 13, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Abay, K.A.; Desalegn, G.; Weldu, Y.; Gebrehiwot, G.T.; Gebreyohannes, G.; Welekidan, L.N.; Desta, K.H.; Asfaw, Y.T.; Teka, A.G.; Gebremedhin, M.T. Prevalence and Antimicrobial Resistance of Campylobacter Species and Associated Factors Among Under-Five Children with Diarrhea at Randomly Selected Public Health Facilities in Mekelle, Tigray, Ethiopia. Infect. Drug Resist. 2024, 17, 495–505. [Google Scholar] [CrossRef]
- Parsons, B.; Porter, C.; Ryvar, R.; Stavisky, J.; Williams, N.; Pinchbeck, G.; Birtles, R.; Christley, R.; German, A.; Radford, A. Prevalence of Campylobacter spp. in a cross-sectional study of dogs attending veterinary practices in the UK and risk indicators associated with shedding. Vet. J. 2010, 184, 66–70. [Google Scholar] [CrossRef]
- Dauda Goni, M.; Abdul Aziz, S.; Dhaliwal, G.; Zakaria, Z.; Bitrus, A.; Muhammad, I.; Aung, W.; Mohamed, M.; Aliyu, A. Occurrence of Campylobacter in dogs and cats in Selangor Malaysia and the associated risk factors. Malays. J. Microbiol. 2017, 13, 164–171. [Google Scholar] [CrossRef]
- Lemos, M.-L.; Nunes, A.; Ancora, M.; Cammà, C.; Costa, P.M.d.; Oleastro, M. Campylobacter jejuni in Different Canine Populations: Characteristics and Zoonotic Potential. Microorganisms 2021, 9, 2231. [Google Scholar] [CrossRef] [PubMed]
- Qasim, S.; Khan, A.U.; Raza, A. Zoonotic Diseases And Antimicrobial Resistance: A Dual Threat At The Human-Animal Interface. Arch. Vet. Med. 2024, 17, 5–17. [Google Scholar] [CrossRef]
- Dafale, N.A.; Srivastava, S.; Purohit, H.J. Zoonosis: An Emerging Link to Antibiotic Resistance Under “One Health Approach”. Indian J. Microbiol. 2020, 60, 139–152. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial Resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6, eARBA0013-2017. [Google Scholar] [CrossRef]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant. Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.; Price, S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet. Rec. 2013, 173, 475. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, M.; Demirbilek, S.K. Investigation of prevalence and antimicrobial resistance of Salmonella in pet dogs and cats in Turkey. Vet. Med. Sci. 2024, 10, e1513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Beyi, A.F.; Yin, Y. Zoonotic and antibiotic-resistant Campylobacter: A view through the One Health lens. One Health Adv. 2023, 1, 4. [Google Scholar] [CrossRef]
- Acke, E.; McGill, K.; Golden, O.; Jones, B.; Fanning, S.; Whyte, P. Prevalence of thermophilic Campylobacter species in household cats and dogs in Ireland. Vet. Rec. 2009, 164, 44–47. [Google Scholar] [CrossRef]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the transmission of antimicrobial resistant bacteria between humans and companion animals: A scoping review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef]
- Munir, S.M.I.; Mokhtar, M.I.; Arham, A.F. Public perspectives on strays and companion animal management in Malaysia. BMC Public Health 2023, 23, 1428. [Google Scholar] [CrossRef]
- Sui Mien, T.; Joslyn Panting, A.; Johari, M.; Perialathan, K.; Ahmad, M.; Sanusi, N. Dog Ownership: Licensing and Vaccination NHMS 2020 Findings; Institute for Health Behavioural Research, National Institutes of Health, Ministry of Health Malaysia: Shah Alam, Malaysia, 2023. [Google Scholar] [CrossRef]
- Goni, M.D.; Osman, A.Y.; Aziz, S.A.; Zunita, Z.; Dhaliwal, G.K.; Jalo, M.I.; Bitrus, A.A.; Jajere, S.M.; Abbas, M.A. Antimicrobial Resistance of Campylobacter spp. and Arcobacter butzleri from Pets in Malaysia. Am. J. Anim. Vet. Sci. 2018, 13, 152–161. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Cracknell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan River Basin, Malaysia. Int. J. Climatol. 2017, 37, 3780–3797. [Google Scholar] [CrossRef]
- Lwanga, S.K.; Lemeshow, S.; World Health Organization. Sample size determination in health studies: A practical manual/SK Lwanga and S. Lemeshow. In Sample Size Determination in Health Studies: A Practical Manual/SK Lwanga and S. Lemeshow; World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Šimunović, K.; Zajkoska, S.; Bezek, K.; Klančnik, A.; Barlič Maganja, D.; Smole Možina, S. Comparison of Campylobacter jejuni Slaughterhouse and Surface-Water Isolates Indicates Better Adaptation of Slaughterhouse Isolates to the Chicken Host Environment. Microorganisms 2020, 8, 1693. [Google Scholar] [CrossRef]
- Stef, L.; Cean, A.; Vasile, A.; Julean, C.; Drinceanu, D.; Corcionivoschi, N. Virulence characteristics of five new Campylobacter jejuni chicken isolates. Gut. Pathog. 2013, 5, 41. [Google Scholar] [CrossRef]
- Mohammed Dauda Goni, M.D.G.; Saleha Abdul-Aziz, S.A.-A.; Gurmeet Kaur Dhaliwal, G.K.D.; Zakaria Zunita, Z.Z.; Asinamai Athliamai Bitrus, A.A.B.; Ibrahim Muhammad Jalo, I.M.J.; Wint Wint Aung, W.W.A.; Mohamed Abdelrahman Mohamed, M.A.M.; Abdulrasheed Bello Aliyu, A.B.A. Occurrence of Campylobacter in dogs and cats in Selangor Malaysia and the associated risk factors. Turk. J. Vet. Anim. Sci. 2016, 40, 14. [Google Scholar]
- Denis, M.; Refrégier-Petton, J.; Laisney, M.J.; Ermel, G.; Salvat, G. Campylobacter contamination in French chicken production from farm to consumers. Use of a PCR assay for detection and identification of Campylobacter jejuni and Camp. coli. J. Appl. Microbiol. 2001, 91, 255–267. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Qiao, B.; Xu, X.-B.; Zhang, J.-Z. Development and application of a real-time polymerase chain reaction method for Campylobacter jejuni detection. World J. Gastroenterol. WJG 2013, 19, 3090. [Google Scholar] [CrossRef]
- Wang, G.; Clark, C.G.; Taylor, T.M.; Pucknell, C.; Barton, C.; Price, L.; Woodward, D.L.; Rodgers, F.G. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J. Clin. Microbiol. 2002, 40, 4744–4747. [Google Scholar] [CrossRef]
- Kawasaki, S.; Fratamico, P.M.; Wesley, I.V.; Kawamoto, S. Species-specific identification of campylobacters by PCR-restriction fragment length polymorphism and PCR targeting of the gyrase B gene. Appl. Environ. Microbiol. 2008, 74, 2529–2533. [Google Scholar] [CrossRef][Green Version]
- Ju, C.; Ma, Y.; Zhang, B.; Zhou, G.; Wang, H.; Yu, M.; He, J.; Duan, Y.; Zhang, M. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front. Microbiol. 2023, 14, 1152719. [Google Scholar] [CrossRef] [PubMed]
- Iannino, F.; Di Donato, G.; Salucci, S.; Ruggieri, E.; Vincifori, G.; Danzetta, M.L.; Dalla Villa, P.; Di Giannatale, E.; Lotti, G.; De Massis, F. Campylobacter and risk factors associated with dog ownership: A retrospective study in household and in shelter dogs. Vet. Ital. 2022, 58, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kiarie, A.; Bebora, L.; Gitao, G.; Ochien’g, L.; Okumu, N.; Mutisya, C.; Wasonga, J.; Masudi, S.P.; Moodley, A.; Amon-Tanoh, M.A.; et al. Prevalence and risk factors associated with the occurrence of Campylobacter sp. in children aged 6-24 months in peri-urban Nairobi, Kenya. Front. Public Health 2023, 11, 1147180. [Google Scholar] [CrossRef]
- Cribb, D.M.; Varrone, L.; Wallace, R.L.; McLure, A.T.; Smith, J.J.; Stafford, R.J.; Bulach, D.M.; Selvey, L.A.; Firestone, S.M.; French, N.P.; et al. Risk factors for campylobacteriosis in Australia: Outcomes of a 2018–2019 case-control study. BMC Infect. Dis. 2022, 22, 586. [Google Scholar] [CrossRef]
- Wayne, A.; Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement (CLSI Document M100-S20); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010; Available online: https://webstore.ansi.org/standards/clsi/m100s20vol30 (accessed on 28 July 2025).
- Gaddafi, M.; Yakubu, Y.; Bello, M.; Bitrus, A.; Musawa, A.; Garba, B.; Lawal, H.; Aliyu, M.; Barka, S.; Emeka, A. Occurrence and Antibiotic Resistance Profiles of Methicillin-resistant Staphylococcus aureus (MRSA) in layer chickens in Kebbi, Nigeria. Folia Vet. 2022, 66, 37–45. [Google Scholar] [CrossRef]
- Xu, N.; Shen, Y.; Jiang, L.; Jiang, B.; Li, Y.; Yuan, Q.; Zhang, Y. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. Environ. Sci. Pollut. Res. 2023, 30, 71371–71381. [Google Scholar] [CrossRef] [PubMed]
- Titilawo, Y.; Sibanda, T.; Obi, L.; Okoh, A. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of water. Environ. Sci. Pollut. Res. 2015, 22, 10969–10980. [Google Scholar] [CrossRef]
- Amaeze, C.F.; Goni, M.D.; Kamaruzzaman, F.; Sani, G.M.; Yakubu, A. Exploring Campylobacter jejuni: Elucidating pathogenic mechanisms, virulence factors, antimicrobial resistance in diverse animal species. Vet. Integr. Sci. 2025, 23, 1–47. [Google Scholar] [CrossRef]
- Bojanić, K.; Acke, E.; Roe, W.D.; Marshall, J.C.; Cornelius, A.J.; Biggs, P.J.; Midwinter, A.C. Comparison of the pathogenic potential of Campylobacter jejuni, C. upsaliensis, and C. helveticus and limitations of using larvae of Galleria mellonella as an infection model. Pathogens 2020, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, C.M.; Waldisperg, M.; Torres, F.I.; Carrasco, S.A.; Sellanes, J.; Pardo-Gandarillas, M.C.; Sigwart, J.D. Environmental and ecological factors mediate taxonomic composition and body size of polyplacophoran assemblages along the Peruvian Province. Sci. Rep. 2019, 9, 15934. [Google Scholar] [CrossRef]
- Yildiz, M.; Sahin, O.; Adiguzel, M.C. Prevalence and antimicrobial resistance of Campylobacter species in shelter-housed healthy and diarrheic cats and dogs in Turkey. Vet. Med. Sci. 2024, 10, e1327. [Google Scholar] [CrossRef]
- Haulisah, N.A.; Hassan, L.; Jajere, S.M.; Ahmad, N.I.; Bejo, S.K. High prevalence of antimicrobial resistance and multidrug resistance among bacterial isolates from diseased pets: Retrospective laboratory data (2015–2017). PLoS ONE 2022, 17, e0277664. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: A narrative review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Mulu, W.; Joossens, M.; Kibret, M.; Van den Abeele, A.M.; Houf, K. Campylobacter occurrence and antimicrobial resistance profile in under five-year-old diarrheal children, backyard farm animals, and companion pets. PLoS Negl. Trop Dis. 2024, 18, e0012241. [Google Scholar] [CrossRef]
- Furtula, V.; Jackson, C.R.; Farrell, E.G.; Barrett, J.B.; Hiott, L.M.; Chambers, P.A. Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in an area of intensive poultry production. Int. J. Environ. Res. Public Health 2013, 10, 1020–1036. [Google Scholar] [CrossRef]
- Buranasinsup, S.; Wiratsudakul, A.; Chantong, B.; Maklon, K.; Suwanpakdee, S.; Jiemtaweeboon, S.; Sakcamduang, W. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated from veterinary staff, pets, and pet owners in Thailand. J. Infect. Public Health 2023, 16, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Shakir, Z.; Alhatami, A.; Ismail Khudhair, Y.; Muhsen Abdulwahab, H. Antibiotic resistance profile and multiple antibiotic resistance index of Campylobacter species isolated from poultry. Arch. Razi Inst. 2021, 76, 1677. [Google Scholar]
- Kadri, S.S. Key takeaways from the US CDC’s 2019 antibiotic resistance threats report for frontline providers. Crit. Care Med. 2020, 48, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M.; Heikkilä, T.; Pernu, N.; Kovanen, S.; Hielm-Björkman, A.; Kivistö, R. Raw Meat-Based Diets in Dogs and Cats. Vet. Sci. 2017, 4, 33. [Google Scholar] [CrossRef]
- Corbee, R.; Hoorn, P.; Overgaauw, P. Zoonotic and Qualitative Aspects of Raw Meat-Based Diets for Dogs in The Netherlands: A Follow-Up Study. Pets 2025, 2, 4. [Google Scholar] [CrossRef]
- Awada, R.; Ghssein, G.; Roz, A.E.; Farhat, M.; Nehme, N.; Hassan, H.F. Prevalence of Campylobacter spp. in broilers in North Lebanon. Vet. World 2023, 16, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Ghssein, G.; Awada, R.; Salami, A.; Bahmad, H.F.; Awad, A.; Joumaa, W.H.; El Roz, A. Prevalence, Laboratory Findings and Clinical Characteristics of Campylobacteriosis Agents among Hospitalized Children with Acute Gastroenteritis in Lebanon. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Candellone, A.; Badino, P.; Girolami, F.; Cerquetella, M.; Nebbia, P.; Aresu, L.; Zoppi, S.; Bergero, D.; Odore, R. Concomitant Campylobacteriosis in a Puppy and in Its Caregiver: A One Health Perspective Paradigm in Human-Pet Relationship. Vet. Sci. 2023, 10, 244. [Google Scholar] [CrossRef]
- Watkins, L.K.F.; Laughlin, M.E.; Joseph, L.A.; Chen, J.C.; Nichols, M.; Basler, C.; Breazu, R.; Bennett, C.; Koski, L.; Montgomery, M.P. Ongoing outbreak of extensively drug-resistant Campylobacter jejuni infections associated with US pet store puppies, 2016-2020. JAMA Netw. Open 2021, 4, e2125203. [Google Scholar] [CrossRef]
- Chaaban, T.; Ezzeddine, Z.; Ghssein, G. Antibiotic Misuse during the COVID-19 Pandemic in Lebanon: A Cross-Sectional Study. COVID 2024, 4, 921–929. [Google Scholar] [CrossRef]
- Górska, A.; Sloderbach, A.; Marszałł, M.P. Siderophore–drug complexes: Potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol. Sci. 2014, 35, 442–449. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef]
- Rhouma, M.; Archambault, M.; Butaye, P. Antimicrobial Use and Resistance in Animals from a One Health Perspective. Vet. Sci. 2023, 10, 319. [Google Scholar] [CrossRef]
- Craddock, H.A.; Kearney, A.; Fitzpatrick, F.; Finn, C.; Pryce, M.T.; Fitzgerald-Hughes, D. The challenge of reducing antimicrobial resistance (AMR) across the one health landscape: Diverse perspectives on AMR risks and their mitigation in sinks, drains, and wastewater. Sci. Total Environ. 2025, 992, 179935. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One health approach. Vet. World 2022, 15, 743. [Google Scholar] [CrossRef]
- Monteiro, H.I.G.; Silva, V.; de Sousa, T.; Calouro, R.; Saraiva, S.; Igrejas, G.; Poeta, P. Antimicrobial Resistance in European Companion Animals Practice: A One Health Approach. Animals 2025, 15, 1708. [Google Scholar] [CrossRef] [PubMed]
Genes | Specie | Primer Sequence | PCR Conditions | Product Size | References |
---|---|---|---|---|---|
16SrRNA | Campylobacter | F-GGATGACACTTTTCGGAGC R-CATTGTAGCACGTGTGTC | Initial denaturation: 95 °C for 10 min, 30 cycles each of 95 °C for 20 s, annealing: 58 °C for 20 s, elongation: 72 °C for 1 min, and final extension time: 72 °C for 7 min. | 816 | [28] |
cj0414 gene | C. jejuni | F-CAAATAAAGTTAGAGGTAGAATGT R- CCATAAGCACTAGCTAGCTGAT | Initial denaturation: 95 °C for 15 min, 25 cycles each of 95 °C for 30 s, annealing: 58 °C for 1.5 min, elongation: 72 °C for 1 min, and final extension time: 72 °C for 7 min. | 161 | [29] |
gyrB gene | C. helviticus | F-AGACAAGAATTTTCTAAAGGTCTAATTGCA R-TTTTAAAATTTTATCCAGCCTTGCTTTTTC | Initial denaturation: 94 °C for 30 s, 30 cycles each of 94 °C for 20 s, annealing: 69 °C for 20 s, elongation: 72 °C for 7 min, and final extension time: 72 °C for 7 min. | 251 | [30] |
Antimicrobial Group | Antimicrobial Agent | Resistant Isolates (%) | ||
---|---|---|---|---|
C. helviticus | C. jejuni | Total | ||
(n = 11) | (n = 3) | (n = 14) | ||
β-Lactams | Amoxicillin | 8 (72.72) | 2 (66.66) | 10 (71.43) |
Ampicillin | 10 (90.90) | 2 (66.66) | 12 (85.71) | |
Aminoglycosides | Gentamicin | 2 (18.18) | 1 (33.33) | 3 (21.43) |
Kanamycin | 1 (9.09) | - | 1 (7.1) | |
Quinolones | Nalidixic acid | 1 (9.09) | 1 (33.33) | 2 (14.23) |
Ciprofloxacin | 1 (9.09) | 1 (33.33) | 2 (14.29) | |
Folate pathway | Trimethoprim | 2 (18.18) | 1 (33.33) | 3 (21.43) |
Inhibitors | Sulfonamides | 6 (54.54) | 1 (33.33) | 7 (50) |
Macrolides | Erythromycin | 7 (63.63) | 2 (66.66) | 9 (64.29) |
Cephems | Cefoxitin | 3 (27.27) | 1 (33.33) | 4 (28.57) |
Tetracyclines | Tetracycline | 6 (54.54) | 2 (66.66) | 8 (57.14) |
Phenicol | Chloramphenicol | 1(9.09) | - | 1 (7.14) |
Number of Antimicrobials | Antibiotic-Resistant Pattern | Number of Isolates | MAR Index |
---|---|---|---|
4 | AMP + AMO + ERY + TET | 1 | 0.3 |
5 | AMP + AMO + ERY + TET + SULF | 3 | 0.4 |
6 | AMP + ERY + SULF + GEN + TET + AMO | 1 | 0.5 |
7 | AMP + AMO + ERY + CEF + TET + TRI + SULF | 1 | 0.58 |
Number of Antimicrobials | Antibiotic-Resistant Pattern | Number of Isolates | MAR Index |
---|---|---|---|
4 | AMP + TET + ERY + AMO | 2 | 0.3 |
8 | AMP + AMO + ERY + SULF + TET + GEN + TRI + CIP | 1 | 0.66 |
Variable | Category/Group | No of Samples | No Positive (%) | Crude Odds Ratio | p-Value | CI 95% |
---|---|---|---|---|---|---|
Location | Veterinary hospital | 35 | 11 (78.6) | 0.364 | 0.409 | 0.234–0.981 |
Veterinary clinics | 15 | 3 (21.4) | Ref | |||
Pet roaming | Outdoor | 14 | 5 (35.7) | 0.410 | 0.220 | 0.275–0.998 |
Management | Indoor | 8 | 2 (14.3) | Ref | ||
Semi roamers | 28 | 7 (50) | 1.180 | 0.025 * | 1.178–1.725 | |
Household | Multi-pet | 38 | 8 (57.1) | 0.286 | 0.581 | 0.172–0.924 |
Density | Single | 12 | 6 (42.9) | Ref | ||
Age | Puppy | 12 | 3 (21.4) | 0.342 | 0.496 | 0.194–0.965 |
Juvenile | 30 | 10 (71.4) | 0.355 | 0.489 | 0.210–0.976 | |
Adult | 8 | 1 (7.1) | Ref | |||
Sex | Male | 23 | 3 (21.4) | Ref | ||
Female | 27 | 11 (78.6) | 0.261 | 0.591 | 0.162–0.892 | |
Breed | Local | 35 | 10 (71.4) | 0.785 | 0.190 * | 0.437–1.234 |
Pedigree | 15 | 4 (28.6) | Ref | |||
Antibiotic exposure | Yes | 35 | 10 (71.4) | 0.298 | 0.551 | 0.186–0.948 |
No | 15 | 4 (28.6) | Ref | |||
Duration of antibiotic | Yes | 35 | 11 (78.6) | 0.248 | 0.572 | 0.152–0.882 |
Within a month | No | 12 | 3 (21.4) | Ref | ||
Contact with another | Yes | 38 | 12 (85.7) | 0.382 | 0.316 | 0.242–0.992 |
Animals | No | 12 | 2 (14.3) | Ref | ||
Water source | Unfiltered | 35 | 8 (57.1) | 0.909 | 0.125 * | 0.613–1.254 |
Filtered | 15 | 6 (42.9) | Ref | |||
Food | Homemade/raw feed | 28 | 6 (42.9) | 1.196 | 0.019 * | 1.202–1.839 |
Pet food | 8 | 3 (21.4) | Ref | |||
Mixed home/pet food | 14 | 5 (35.7) | 0.402 | 0.230 | 0.264–0.994 | |
Vaccination status | Up-to-date | 40 | 11 (78.6) | 0.538 | 0.216 | 0.429–1.220 |
Not up-to-date | 10 | 3 (21.4) | Ref | |||
Deworming status | Up-to-date | 35 | 8 (57.1) | 0.418 | 0.212 | 0.283–1.102 |
Not up-to-date | 15 | 6 (42.9) | Ref |
Variables | Levels | Odds Ratio | p-Value | 95% C.I. |
---|---|---|---|---|
Origin/Household | Semi-roamers | 1.180 | 0.025 * | 1.178–1.725 |
Indoor | NA | Ref | NA | |
Food | Homemade raw feed | 1.196 | 0.019 * | 1.202–1.839 |
Pet food | NA | Ref | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, C.A.; Goni, M.D.; Kamaruzzaman, N.F.; Afolabi, H.A.; Gaddafi, M.S.; Yakubu, A.; Saeed, S.I. Prevalence, Antimicrobial Resistance Profiles, and Risk Factors Analysis of Campylobacter spp. from Dogs in Kelantan, Malaysia. Bacteria 2025, 4, 41. https://doi.org/10.3390/bacteria4030041
Frank CA, Goni MD, Kamaruzzaman NF, Afolabi HA, Gaddafi MS, Yakubu A, Saeed SI. Prevalence, Antimicrobial Resistance Profiles, and Risk Factors Analysis of Campylobacter spp. from Dogs in Kelantan, Malaysia. Bacteria. 2025; 4(3):41. https://doi.org/10.3390/bacteria4030041
Chicago/Turabian StyleFrank, Chinedu Amaeze, Mohammed Dauda Goni, Nor Fadhilah Kamaruzzaman, Hafeez A. Afolabi, Mohammed S. Gaddafi, Aliyu Yakubu, and Shamsaldeen Ibrahim Saeed. 2025. "Prevalence, Antimicrobial Resistance Profiles, and Risk Factors Analysis of Campylobacter spp. from Dogs in Kelantan, Malaysia" Bacteria 4, no. 3: 41. https://doi.org/10.3390/bacteria4030041
APA StyleFrank, C. A., Goni, M. D., Kamaruzzaman, N. F., Afolabi, H. A., Gaddafi, M. S., Yakubu, A., & Saeed, S. I. (2025). Prevalence, Antimicrobial Resistance Profiles, and Risk Factors Analysis of Campylobacter spp. from Dogs in Kelantan, Malaysia. Bacteria, 4(3), 41. https://doi.org/10.3390/bacteria4030041