Microbial Antagonists for the Control of Plant Diseases in Solanaceae Crops: Current Status, Challenges, and Global Perspectives
Abstract
1. Introduction
2. Biodiversity of Antagonistic Microbes
3. Solanaceae Diseases
4. Mode of Action of Antagonistic Microbes for the Management of Plant Diseases
4.1. Competition for Nutrients and Space
4.2. Mycoparasitism
4.3. Antibiosis
4.4. Induced Systemic Resistance
5. Difficulties Encountered During the Commercialization of Biological Control Agents
6. Future Directions and Challenges
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCA | Biological control agents |
GDP | Gross domestic product |
LP | Lipopeptides |
EPA | Environmental Protection Agency |
ER | European Regulation |
References
- Negi, R.; Sharma, B.; Kaur, S.; Kaur, T.; Khan, S.S.; Kumar, S.; Ramniwas, S.; Rustagi, S.; Singh, S.; Rai, A.K.; et al. Microbial antagonists: Diversity, formulation and applications for management of pest–pathogens. Egypt. J. Biol. Pest Control 2023, 33, 1–21. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Wang, Q.; Yao, Q.; Guo, X.; Zhang, Y.; Wang, Z. Identification and functional characterization of the RPP13 gene family in potato (Solanum tuberosum L.) for disease resistance. Front. Plant Sci. 2024, 15, 1515060. [Google Scholar] [CrossRef] [PubMed]
- Górska-Warsewicz, H.; Rejman, K.; Kaczorowska, J.; Laskowski, W. Vegetables, potatoes and their products as sources of energy and nutrients to the average diet in Poland. Int. J. Environ. Res. Public Heal. 2021, 18, 3217. [Google Scholar] [CrossRef]
- Campos, H.; Ortiz, O. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Dongyu, Q. Role and Potential of Potato in Global Food Security Challenges of Global Food Security Contribution of Potato to the World Potential of Global Potato Production Strategies for Promoting Potato Development. May 2022. Available online: https://www.fao.org/3/cc0330en/cc0330en.pdf (accessed on 24 March 2025).
- Mickiewicz, B.; Volkova, E.; Jurczak, R. The global market for potato and potato products in the current and forecast period. Eur. Res. Stud. J. 2022, XXV, 740–751. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Kaur, L.; Singh, J.; Zeng, F. Functional food based on potato. Foods 2023, 12, 2145. [Google Scholar] [CrossRef]
- Degebasa, A.C. Prospects and challenges of postharvest losses of potato (Solanum Tuberosum L.) in Ethiopia. Glob. J. Nutr. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Thokar, N.; Kattel, D.; Subedi, S. Effect of pre-harvest factors on postharvest quality of horticultural products. Food Agri Econ. Rev. 2022, 2, 92–95. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Hull, S.I.; Swanepoel, P.A.; Botes, W.C. A critical review of the factors influencing pre-harvest sprouting of wheat. Agron. J. 2024, 116, 3354–3367. [Google Scholar] [CrossRef]
- Youssef, K.; Ippolito, A.; Roberto, S.R. Editorial: Post-harvest diseases of fruit and vegetable: Methods and mechanisms of action. Front. Microbiol. 2022, 13, 900060. [Google Scholar] [CrossRef]
- Hernandez-Montiel, L.G.; Droby, S.; Preciado-Rangel, P.; Rivas-García, T.; González-Estrada, R.R.; Gutiérrez-Martínez, P.; Ávila-Quezada, G.D. A sustainable alternative for postharvest disease management and phytopathogens biocontrol in fruit: Antagonistic yeasts. Plants 2021, 10, 2641. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Li, C.-H.; Ali, Q.; Zhao, W.; Chi, Y.-K.; Shafiq, M.; Ali, F.; Yu, X.-Y.; Yu, Q.; Zhao, J.-T.; et al. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, Current status, challenges, and global Perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, A.A.; Babalola, O.O.; Loots, D.T. Metabolomic applications for understanding complex tripartite plant-microbes interactions: Strategies and perspectives. Biotechnol. Rep. 2020, 25, e00425. [Google Scholar] [CrossRef]
- Omran, B.A.; Baek, K.H. Control of phytopathogens using sustainable biogenic nanomaterials: Recent perspectives, ecological safety, and challenging gaps. J. Clean. Prod. 2022, 372, 133729. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H.; Kabtimer, N. The exploitation of microbial antagonists against postharvest plant pathogens. Microorganisms 2023, 11, 1044. [Google Scholar] [CrossRef]
- Elango, S.; Shahni, Y.S.; Padamini, R.; Hazarika, S.; Wongamthing, R.; Oraon, S.; Panigrahi, C.K.; Kumar, A.; Thangaraj, R. Harnessing Microbial Antagonists for Biological Control of Plant Pathogens: A Global Perspective. Microbiol. Res. J. Int. 2024, 34, 1–17. [Google Scholar] [CrossRef]
- Horak, I.; Horn, S.; Pieters, R. Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context. Environ. Pollut. 2021, 268, 115718. [Google Scholar] [CrossRef]
- Horn, S.; Pieters, R.; Bredenhann, L.; Horak, I.; Malherbe, W. Occurrence of Glyphosate and Ampha in South African Surface Water Resource. In Report to the Water Research Commission; Water Research Commission: Pretoria, South Africa, 2023; Available online: https://www.wrc.org.za (accessed on 20 February 2025).
- Torres-Palazzolo, C.; Ferreyra, S.; Hugalde, I.P.; Kuhn, Y.; Combina, M.; Ponsone, M.L. Recent advances in biocontrol and other alternative strategies for the management of postharvest decay in table grapes. Int. J. Food Microbiol. 2024, 420, 110766. [Google Scholar] [CrossRef]
- González-Estrada, R.; Blancas-Benítez, F.; Velázquez-Estrada, R.M.; Montaño-Leyva, B.; Ramos-Guerrero, A.; Aguirre-Güitrón, L.; Moreno-Hernández, C.; Coronado-Partida, L.; Herrera-González, J.A.; Rodríguez-Guzmán, C.A.; et al. Alternative Eco-Friendly Methods in the Control of Post-Harvest Decay of Tropical and Subtropical Fruits. April 2019. Available online: www.intechopen.com (accessed on 8 January 2025). [CrossRef]
- Chaudhary, R.; Nawaz, A.; Khattak, Z.; Butt, M.A.; Fouillaud, M.; Dufossé, L.; Munir, M.; Haq, I.; Mukhtar, H. Microbial bio-control agents: A comprehensive analysis on sustainable pest management in agriculture. J. Agric. Food Res. 2024, 18, 101421. [Google Scholar] [CrossRef]
- Bonaterra, A.; Badosa, E.; Daranas, N.; Francés, J.; Roselló, G.; Montesinos, E. Bacteria as biological control agents of plant diseases. Microorganisms 2022, 10, 1759. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676. [Google Scholar] [CrossRef]
- Khan, M.R.; Ruiu, L.; Akram, M.; Mohammed, R.K.A. Nematode problems in cucurbits and their sustainable management. In Nematode Diseases of Crops and Their Sustainable Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 279–296. [Google Scholar] [CrossRef]
- Haq, I.U.; Rahim, K.; Yahya, G.; Ijaz, B.; Maryam, S.; Paker, N.P. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. Biotechnol. Rep. 2024, 44, e00859. [Google Scholar] [CrossRef] [PubMed]
- Moran, V.C.; Zachariades, C.; Hoffmann, J.H. Implementing a system in South Africa for categorizing the outcomes of weed biological control. Biol. Control. 2021, 153, 104431. [Google Scholar] [CrossRef]
- Paterson, I.D.; Motitsoe, S.N.; Coetzee, J.A.; Hill, M.P. Recent post-release evaluations of weed biocontrol programmes in South Africa: A summary of what has been achieved and what can be improved. BioControl 2024, 69, 279–291. [Google Scholar] [CrossRef]
- Karoney, E.M.; Molelekoa, T.; Bill, M.; Siyoum, N.; Korsten, L. Global research network analysis of fresh produce postharvest technology: Innovative trends for loss reduction. Postharvest Biol. Technol. 2024, 208, 112642. [Google Scholar] [CrossRef]
- Wend, K.; Zorrilla, L.; Freimoser, F.M.; Gallet, A. Microbial pesticides—Challenges and future perspectives for testing and safety assessment with respect to human health. Environ. Health 2024, 23, 49. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Ramudingana, P.; Makhado, N.; Kamutando, C.N.; Thantsha, M.S.; Mamphogoro, T.P. Fungal biocontrol agents in the management of postharvest losses of fresh produce—A comprehensive review. J. Fungi 2025, 11, 82. [Google Scholar] [CrossRef]
- Llorens, E.; Agustí-Brisach, C. Biocontrol of plant diseases by means of antagonist microorganisms, biostimulants and induced resistance as alternatives to chemicals. Plants 2022, 11, 3521. [Google Scholar] [CrossRef]
- Mamphogoro, T.P.; Babalola, O.O.; Aiyegoro, O.A. Exploitation of epiphytic bacterial antagonists for the management of post-harvest diseases of sweet pepper and other fresh produce—A viable option. Biocontrol Sci. Technol. 2020, 30, 741–761. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef] [PubMed]
- Amoo, A.E.; Olanrewaju, O.S.; Babalola, O.O.; Ajilogba, C.F.; Chukwuneme, C.F.; Ojuederie, O.B.; Omomowo, O.I. The functionality of plant-microbe interactions in disease suppression. J. King Saud Univ. Sci. 2023, 35, 102893. [Google Scholar] [CrossRef]
- Mohamed, B.F.F.; Sallam, N.M.A.; Alamri, S.A.M.; Abo-Elyousr, K.A.M.; Mostafa, Y.S.; Hashem, M. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt. J. Biol. Pest Control 2020, 30, 61. [Google Scholar] [CrossRef]
- Ghareeb, R.Y.; Jaremko, M.; Abdelsalam, N.R.; Abdelhamid, M.M.A.; EL-Argawy, E.; Ghozlan, M.H. Biocontrol potential of endophytic fungi against phytopathogenic nematodes on potato (Solanum tuberosum L.). Sci. Rep. 2024, 14, 15547. [Google Scholar] [CrossRef]
- Ganusova, E.E.; Vo, L.T.; Abraham, P.E.; Yoder, L.O.; Hettich, R.L.; Alexandre, G.; Petersen, J.M. The Azospirillum brasilense Core Chemotaxis Proteins CheA1 and CheA4 Link Chemotaxis Signaling with Nitrogen Metabolism. mSystems 2021, 6, e01354-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kerečki, S.; Pećinar, I.; Karličić, V.; Mirković, N.; Kljujev, I.; Raičević, V.; Jovičić-Petrović, J. Azotobacter chroococcum F8/2: A multitasking bacterial strain in sugar beet biopriming. J. Plant Interact. 2022, 17, 719–730. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, Y.; Mu, R.; Wang, X.; Zhou, Q.; Islam, R.; Su, X.; Tian, Y. Biological control effect of antagonistic bacteria on potato black scurf disease caused by Rhizoctonia solani. Agronomy 2024, 14, 351. [Google Scholar] [CrossRef]
- Sumbul, A.; Ansari, R.A.; Rizvi, R.; Mahmood, I. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi J. Biol. Sci. 2020, 27, 3634–3640. [Google Scholar] [CrossRef]
- Mehta, P.; Walia, A.; Kulshrestha, S.; Chauhan, A.; Shirkot, C.K. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J. Basic Microbiol. 2015, 55, 33–44. [Google Scholar] [CrossRef]
- Karačić, V.; Miljaković, D.; Marinković, J.; Ignjatov, M.; Milošević, D.; Tamindžić, G.; Ivanović, M. Bacillus species: Excellent biocontrol agents against tomato diseases. Microorganisms 2024, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- García-González, T.; Tanahiri, H.; Sáenz-Hidalgo, H.V.; Silva-Rojas; Morales-Nieto, C.; Vancheva, T.; Koebnik, R.; Ávila-Quezada, G.D. Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathol. J. 2018, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Chen, H.; Zhu, L.; Song, Y.; Jiang, Q.; Zhang, Y.; Ali, Q.; Gu, Q.; Gao, X.; Borriss, R.; et al. Profiling of antimicrobial metabolites synthesized by the endophytic and genetically amenable biocontrol strain Bacillus velezensis DMW1. Microbiol. Spectr. 2023, 11, e0003823. [Google Scholar] [CrossRef]
- Langendries, S.; Goormachtig, S. Paenibacillus polymyxa, a Jack of all trades. Environ. Microbiol. 2021, 23, 5659–5669. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, X.; Cai, Z.; Guo, L.; Chen, X.; Chen, X.; Liu, J.; Feng, M.; Qiu, Y.; Zhang, Y.; et al. A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control botrytis cinerea in tomato. Pathogens 2021, 10, 22. [Google Scholar] [CrossRef]
- Maes, S.; De Reu, K.; Van Weyenberg, S.; Lories, B.; Heyndrickx, M.; Steenackers, H. Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses. BMC Microbiol. 2020, 20, 373. [Google Scholar] [CrossRef]
- Miftakhov, A.K.; Diabankana, R.G.C.; Frolov, M.; Yusupov, M.M.; Validov, S.Z.; Afordoanyi, D.M. Persistence as a constituent of a biocontrol mechanism (Competition for nutrients and niches) in Pseudomonas putida PCL1760. Microorganisms 2023, 11, 19. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, J.; Tan, S.; Mei, X.; Shen, Q.; Xu, Y. The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biol. Control. 2013, 65, 278–285. [Google Scholar] [CrossRef]
- Foughalia, A.; Bouaoud, Y.; Chandeysson, C.; Djedidi, M.; Tahirine, M.; Aissat, K.; Nicot, P. Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egypt. J. Biol. Pest Control 2022, 32, 12. [Google Scholar] [CrossRef]
- Papade, S.E.; Mohapatra, B.; Phale, P.S. Pseudomonas and Acinetobacter spp. capable of metabolizing aromatics displays multifarious plant growth promoting traits: Insights on strategizing consortium-based application to agro-ecosystems. Environ. Technol. Innov. 2024, 36, 103786. [Google Scholar] [CrossRef]
- da Silva, J.C.; Santos, L.D.S.; Faria, P.S.A.; Silva, F.G.; Neto, A.R.; Martins, P.F.; Selari, P.J.R.G. Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane. Pesqui. Agropecu. Trop. 2021, 51, e69373. [Google Scholar] [CrossRef]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Parra-Cota, F.I.; Santos-Villalobos, S.D.L. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2018, 36, 95–130. [Google Scholar] [CrossRef]
- Roca-Couso, R.; Flores-Félix, J.D.; Rivas, R. Mechanisms of action of microbial biocontrol agents against Botrytis cinerea. J. Fungi 2021, 7, 1045. [Google Scholar] [CrossRef]
- Noor, A.O.; Almasri, D.M.; Basyony, A.; Albohy, A.; Almutairi, L.S.; Alhammadi, S.S.; Alkhamisi, M.A.; Alsharif, S.A.; Elfaky, M.A. Biodiversity of N-acyl homoserine lactonase (aiiA) gene from Bacillus subtilis. Microb. Pathog. 2022, 166, 105543. [Google Scholar] [CrossRef]
- Grahovac, J.; Pajčin, I.; Vlajkov, V. Bacillus VOCs in the context of biological control. Antibiotics 2023, 12, 581. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, W.; Cheng, S.; Zhang, H.; Zong, J.; Zhang, Z. Ralstonia solanacearum—A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. Front. Plant Sci. 2023, 14, 1141902. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buswal, M.K.; Punia, R.; Kumar, M.; RK, M.K.T.; Lal, M.K.; Kumar, R. Systemic acquired resistance inducing chemicals mitigate black scurf disease in potato by activating defense-related enzymes. PeerJ 2024, 12, e18470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marzouk, T.; Chaouachi, M.; Sharma, A.; Jallouli, S.; Mhamdi, R.; Kaushik, N.; Djébali, N. Biocontrol of Rhizoctonia solani using volatile organic compounds of solanaceae seed-borne endophytic bacteria. Postharvest. Biol. Technol. 2021, 181, 111655. [Google Scholar] [CrossRef]
- Diniz, G.d.F.D.; Figueiredo, J.E.F.; Canuto, K.M.; Cota, L.V.; Souza, A.S.d.Q.; Simeone, M.L.F.; Tinoco, S.M.d.S.; Ribeiro, P.R.V.; Ferreira, L.V.S.; Marins, M.S.; et al. Chemical and genetic characterization of lipopeptides from Bacillus velezensis and Paenibacillus ottowii with activity against Fusarium verticillioides. Front. Microbiol. 2024, 15, 1443327. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Jung, H.; Koo, B.K.; Han, J.A.; Lee, H.S. Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. J. Plant Biol. 2023, 66, 485–498. [Google Scholar] [CrossRef]
- Shi, H.; Li, W.; Zhou, Y.; Wang, J.; Shen, S. Can we control potato fungal and bacterial diseases?—Microbial regulation. Heliyon 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Hrustić, J.; Medić, O.; Berić, T.; Mihajlović, M.; Milijašević-Marčić, S.S.; Stanković, S.; Pešić, B. Suppression of Monilinia brown rot by Bacillus spp. Strains. Agronomy 2023, 13, 2839. [Google Scholar] [CrossRef]
- Thomas, B.O.; Lechner, S.L.; Ross, H.C.; Joris, B.R.; Glick, B.R.; Stegelmeier, A.A. Friends and Foes: Bacteria of the hydroponic plant microbiome. Plants 2024, 13, 3069. [Google Scholar] [CrossRef]
- de Freitas, C.C.; Taylor, C.G. Biological control of hairy root disease using beneficial Pseudomonas strains. Biol. Control. 2023, 177, 105098. [Google Scholar] [CrossRef]
- Abreo, E.; Valle, D.; González, A.; Altier, N. Control of damping-off in tomato seedlings exerted by Serratia spp. strains and identification of inhibitory bacterial volatiles in vitro. Syst. Appl. Microbiol. 2021, 44, 126177. [Google Scholar] [CrossRef]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.O.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Błaszczyk, L.; Siwulski, M.; Sobieralski, K.; Lisiecka, J.; Jędryczka, M. Trichoderma spp.-Application and Prospects for Use in Organic Farming and Industry. J. Plant Prot. Res. 2014, 54, 4. [Google Scholar] [CrossRef]
- Bissett, J.; Gams, W.; Jaklitsch, W.; Samuels, G.J. Accepted Trichoderma names in the year 2015. IMA Fungus 2015, 6, 263–295. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Steindorff, A.S.; Chenthamara, K.; Manganiello, G.; Henrissat, B.; Zhang, J.; Cai, F.; Kopchinskiy, A.G.; Kubicek, E.M.; Kuo, A.; et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genom. 2019, 20, 485. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Mahanta, M.; Singh, S.B.; Thakuria, D.; Deb, L.; Kumari, A.; Upamanya, G.K.; Boruah, S.; Dey, U.; Mishra, A.K.; et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front. Plant Sci. 2023, 14, 1145715. [Google Scholar] [CrossRef] [PubMed]
- Plessis, I.L.D.; Druzhinina, I.S.; Atanasova, L.; Yarden, O.; Jacobs, K. The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 2018, 110, 559–583. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.P.; Sharma, C.; Pathak, P.; Kanaujia, A.; Saxena, M.J.; Kalra, A. Management of phyto-parasitic nematodes using bacteria and fungi and their consortia as biocontrol agents. Environ. Sci. Adv. 2024, 4, 335–354. [Google Scholar] [CrossRef]
- Caccavo, V.; Forlano, P.; Mang, S.M.; Fanti, P.; Nuzzaci, M.; Battaglia, D.; Trotta, V. Effects of Trichoderma harzianum strain T22 on the arthropod community associated with tomato plants and on the crop performance in an experimental field. Insects 2022, 13, 418. [Google Scholar] [CrossRef]
- Vitti, A.; Pellegrini, E.; Nali, C.; Lovelli, S.; Sofo, A.; Valerio, M.; Scopa, A.; Nuzzaci, M. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by cucumber mosaic virus. Front. Plant Sci. 2016, 7, 1520. [Google Scholar] [CrossRef]
- Waals, J.E.; Krüger, K. Emerging potato pathogens affecting food security in southern Africa: Recent research. S. Afr. J. Sci. 2020, 116, 1–7. [Google Scholar] [CrossRef]
- Charkowski, A.; Kalpana, S.; Monica, L.P.; Gary, A.S.; John, E. Bacterial diseases of potato. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer: Cham, Switzerland, 2020; pp. 351–388. [Google Scholar] [CrossRef]
- Van der Waals, J.E.; Krüger, K.K.; Franke, A.C.; Haverkort, A.J.; Steyn, J.M. Climate change and potato production in contrasting South African agro-ecosystems 3. Effects on relative development rates of selected pathogens and pests. Potato Res. 2013, 56, 67–84. [Google Scholar] [CrossRef]
- Maciag, T.; Kozieł, E.; Otulak-Kozieł, K.; Jafra, S.; Czajkowski, R. Looking for resistance to soft rot disease of potatoes facing environmental hypoxia. Int. J. Mol. Sci. 2024, 25, 3757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Zaidi, W.J.; Ali, A.M.; Muhsen, T.A. Efficacy of nanoparticle zinc oxide in the resistance of fungus Rhizoctonia solani causing black scurf disease in local potatoes. Casp. J. Environ. Sci. 2023, 21, 95–103. [Google Scholar] [CrossRef]
- Rafiq, M.; Shoaib, A.; Javaid, A.; Perveen, S.; Umer, M.; Arif, M.; Cheng, C. Exploration of resistance level against black scurf caused by Rhizoctonia solani in different cultivars of potato. Plant Stress 2024, 12, 100476. [Google Scholar] [CrossRef]
- Truter, M.; Wehner, F.C. Anastomosis grouping of Rhizoctonia solani associated with black scurf and stem canker of potato in South Africa. Plant Dis. 2004, 88, 83. [Google Scholar] [CrossRef] [PubMed]
- Mothibeli, K.; Lekota, M.; Liphoto, M.; Morojele, M.E.; Muzhinji, N. First report of Rhizoctonia solani associated with black scurf of potato tubers in Lesotho. Int. J. Phytopathol. 2023, 12, 87–97. [Google Scholar] [CrossRef]
- Walid, N.; Al-Jaramany, L.; Elbenay, A.; Al-Mhethawi, R. Biological Control of Tomato Damping-off and Potato Black Scurf by Seed Treatment with Trichoderma harzianum. Jordan J. Biol. Sci. 2022, 15, 373–380. [Google Scholar]
- Ibrahim, M.E.-S. In vitro antagonistic activity of Trichoderma harzianum against Rhizoctonia solani the causative agent of potato black scurf and stem canker. Egypt. J. Bot. 2017, 57, 173–185. [Google Scholar] [CrossRef][Green Version]
- Madlhophe, S.; Ogugua, U.V.; Makhubu, F.N.; Figlan, S. Use of biological control agents for managing fungal pathogens in Solanaceae crops: Progress and future perspectives—A review. Discov. Appl. Sci. 2025, 7, 83. [Google Scholar] [CrossRef]
- Kurabachew, H.; Ayana, G. Bacterial wilt caused by Ralstonia solanacearum in Ethiopia: Status and management approaches: A Review. Int. J. Phytopathol. 2017, 5, 107–119. [Google Scholar] [CrossRef]
- Fu, H.Z.; Marian, M.; Enomoto, T.; Hieno, A.; Ina, H.; Suga, H.; Shimizu, M. Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic Bacillus sp. Microbes Environ. 2020, 35, ME20078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abo-Elyousr, K.A.; Khalil Bagy, H.M.; Hashem, M.; Alamri, S.A.; Mostafa, Y.S. Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egypt. J. Biol. Pest Control 2019, 29, 54. [Google Scholar]
- Barra-Bucarei, L.; Iglesias, A.F.; González, M.G.; Aguayo, G.S.; Carrasco-Fernández, J.; Castro, J.F.; Campos, J.O. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms 2019, 8, 65. [Google Scholar] [CrossRef]
- Saldaña-Mendoza, S.A.; Pacios-Michelena, S.; Palacios-Ponce, A.S.; Chávez-González, M.L.; Aguilar, C.N. Trichoderma as a biological control agent: Mechanisms of action, benefits for crops and development of formulations. World J. Microbiol. Biotechnol. 2023, 39, 269. [Google Scholar] [CrossRef] [PubMed]
- Jan, F.; Arshad, H.; Ahad, M.; Jamal, A.; Smith, D.L. In vitro assessment of Bacillus subtilis FJ3 affirms its biocontrol and plant growth promoting potential. Front. Plant Sci. 2023, 14, 1205894. [Google Scholar] [CrossRef] [PubMed]
- Chepsergon, J.; Moleleki, L.N. Rhizosphere bacterial interactions and impact on plant health. Curr. Opin. Microbiol. 2023, 73, 102297. [Google Scholar] [CrossRef] [PubMed]
- Riseh, R.S.; Fathi, F.; Vazvani, M.G.; Tarkka, M.T. Plant Colonization by Biocontrol Bacteria and Improved Plant Health: A Review. Front. Biosci. 2025, 30, 23223. [Google Scholar] [CrossRef]
- Dutta, S.; Lee, Y.H. High-throughput identification of genes influencing the competitive ability to obtain nutrients and performance of biocontrol in Pseudomonas putida JBC17. Sci. Rep. 2022, 12, 872. [Google Scholar] [CrossRef]
- Mehmood, N.; Saeed, M.; Zafarullah, S.; Hyder, S.; Rizvi, Z.F.; Gondal, A.S.; Jamil, N.; Iqbal, R.; Ali, B.; Ercisli, S.; et al. Multifaceted impacts of plant-beneficial Pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega 2023, 8, 22296–22315. [Google Scholar] [CrossRef]
- Bazghaleh, N.; Prashar, P.; Woo, S.; Vandenberg, A. Effects of lentil genotype on the colonization of beneficial Trichoderma species and biocontrol of aphanomyces root rot. Microorganisms 2020, 8, 1290. [Google Scholar] [CrossRef]
- Dugassa, A.; Alemu, T.; Woldehawariat, Y. In-vitro compatibility assay of indigenous Trichoderma and Pseudomonas species and their antagonistic activities against black root rot disease (Fusarium solani) of faba bean (Vicia faba L.). BMC Microbiol. 2021, 21, 115. [Google Scholar] [CrossRef]
- Waqar, S.; Bhat, A.A.; Khan, A.A. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. Plant Physiol. Biochem. 2024, 206, 108174. [Google Scholar] [CrossRef]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. J. Fungi 2022, 8, 23. [Google Scholar] [CrossRef]
- Hamid, R.; Khan, M.A.; Ahmad, M.; Ahmad, M.M.; Abdin, M.Z.; Musarrat, J.; Javed, S. Chitinases: An update. J. Pharm. Bioallied Sci. 2013, 5, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Tharanath, A.C.; Upendra, R.S.; Rajendra, K. Soil symphony: A comprehensive overview of plant–microbe interactions in agricultural systems. Appl. Microbiol. 2024, 4, 1549–1567. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of Bacillus spp. In disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- de Oliveira, C.M.; Oshiquiri, L.H.; Almeida, N.O.; Steindorf, A.S.; da Rocha, M.R.; Georg, R.C.; Ulhoa, C.J. Trichoderma harzianum transcriptome in response to the nematode Pratylenchus brachyurus. Biol. Control. 2023, 183, 105245. [Google Scholar] [CrossRef]
- Moo-Koh, F.A.; Oshiquiri, L.H.; Almeida, N.O.; Steindorf, A.S.; da Rocha, M.R.; Georg, R.C.; Ulhoa, C.J. In vitro Assessment of organic and residual fractions of mematicidal culture filtrates from thirteen tropical Trichoderma Strains and metabolic profiles of most-active. J. Fungi 2022, 8, 82. [Google Scholar] [CrossRef]
- Saharan, R.; Patil, J.A.; Yadav, S.; Kumar, A.; Goyal, V. The nematicidal potential of novel fungus, Trichoderma asperellum FbMi6 against Meloidogyne incognita. Sci. Rep. 2023, 13, 6603. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z.; Shao, J.; Xu, Z.; Liu, Y.; Xun, W.; Miao, Y.; Shen, Q.; Zhang, R. Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microb. Biotechnol. 2023, 16, 2250–2263. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Li, P.; Kwok, A.H.Y.; Jiang, J.; Ran, T.; Xu, D.; Wang, W.; Leung, F.C. Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS ONE 2015, 10, e0123061. [Google Scholar] [CrossRef]
- Mamphogoro, T.P.; Kamutando, C.N.; Maboko, M.M.; Aiyegoro, O.A.; Babalola, O.O. De novo genome assessment of Serratia marcescens SGT5.3, a potential plant growth-promoting bacterium isolated from the surface of Capsicum annuum Fruit. Genome Announc. 2023, 12, e0115422. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, Y.; Hwang, Y.J.; Lee, M.H.; Balaraju, K.; Jeon, Y. Identification and characterization of Brevibacillus halotolerans B-4359: A potential antagonistic bacterium against red pepper anthracnose in Korea. Front. Microbiol. 2023, 14, 1200023. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.; Di Guardo, M.; Bella, P.; Ghadamgahi, F.; Dimaria, G.; Zago, R.; Cirvilleri, G.; Catara, V. Bioprospecting of beneficial bacteria traits associated with tomato root in greenhouse environment reveals that sampling sites impact more than the root compartment. Front. Plant Sci. 2021, 12, 637582. [Google Scholar] [CrossRef] [PubMed]
- Velivelli, S.L.S.; De Vos, P.; Kromann, P.; Declerck, S.; Prestwich, B.D. Biological control agents: From field to market, problems, and challenges. Trends Biotechnol. 2014, 32, 493–496. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Singh, N.K.S.K.; Yadav, N.; Singh, V.K.; Kumari, M.; Kumar, D.; Shukla, L.; Kaushalendra; Bhardwaj, N.; Kumar, A. Biocontrol screening of endophytes: Applications and limitations. Plants 2023, 12, 2480. [Google Scholar] [CrossRef]
Biological Control Agents | Pathogens | Mode of Action | Plant Crop | Reference |
---|---|---|---|---|
Acinetobacter rhizosphaere | Ralstonia solanacearum | Enhances salt stress, produces plant growth hormones (auxin), and degrades organophosphorus pesticides by producing indole-3-acetic acid | Potato | [39] |
Aspergillus flavus (ON146363) | Meloidogyne incognita | Reduces nematode propagation by producing various nematicidal secondary metabolites: gadoleic acid, oleic acid, and palmitic acid. | Potato | [40] |
Azospirillum brasilense | Pseudomonas syringae | Phytohormone production, induced systemic resistance (ISR), and induced systemic tolerance (IST) | Tomato, potato | [41] |
Azotobacter chroococcum | Rhizoctonia solani and Fusarium oxysporum | Nutrient solubilization | Tomato | [42] |
Bacillus amyloliquefaciens HT | Rhizoctonia solani | Secretes various extracellular enzymes (protease, amylase, and cellulase) | Potato | [43] |
Bacillus circulans CB7 | Dematophora necatrix | P-solubilization and 1-aminocyclopropane-1-carboxylate deaminase activity | Tomato | [44] |
Bacillus pumilus | Fusarium oxysporum | Activates plant defence responses under adverse conditions. | Tomato | [45] |
Bacillus subtilis FJ3 | Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, and Rhizopus oryzae | Produces hydrolytic enzymes, siderophores, indole acetic acid, biofilm formation, and phosphate solubilization | Tomato | [44] |
Bacillus thuriengiensis | Fusarium oxysporum | Produces multiple crystal proteins (δ-endotoxins) | Tomato | [45] |
Bacillus velezensis DMW1 | Phytophthora sojae and Ralstonia solanacearum | Antimicrobial metabolites (fengycin, iturin, and bacillomycin) demonstrated antagonistic activity in vitro and in pot experiments | Tomato | [46] |
Enterobacter cloacae | Fusarium oxysporum | Induces systemic acquired resistance and produces antifungal compounds | Tomato, potato, and eggplant | [47] |
Paenibacillus polymyxa YF | Rhizoctonia solani | Antimicrobial lipopeptides, including fenB, ituC, and srfAA, which are associated with surfactin, iturin, and fengycin synthesis | Potato, eggplant | [48] |
Pseudomonas aeruginosa CQ-40 | Botrytis cinerea | Solubilizes phosphorus, fixes nitrogen, and produces cellulase, protease, and ferrophilin, but it does not produce glucanase or hydrocyanic acid | Tomato | [49] |
Pseudomonas putida PCL1760 | Fusarium oxysporum | Competition for nutrients and niches | Tomato | [50,51] |
Ralstonia pickettii QL-A6 | Ralstonia solanacearum | Induces plants to up-regulate four disease-resistant defence enzymes: phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), and superoxide dismutase (SOD) | Tomato | [52] |
Serratia marcescens | Fusarium oxysporum, Ralstonia solanacearum, and Sclerotinia sclerotiorum | Produces antimicrobial compounds like antibiotics (e.g., prodigiosin) | Bell peppers (Capsicum) | [53,54] |
BCA | Commercial Name | Target Pathogens/Disease |
---|---|---|
Bacillus amyloliquefaciens strain MBI 600 | SERIFEL® | Botrytis cinerea, Sclerotinia spp. |
Bacillus amyloliquefaciens strain FZB24 | TAEAGRO® | Powdery mildew diseases, Botrytis sp. |
Bacillus amyloliquefaciens subsp. plantarum strain D747 | AMYLO-X® | Botrytis cinerea, Monilinia spp., Sclerotinia spp. |
Bacillus pumilus strain QST 2808 | SONATA® | Powdery mildew diseases |
Pseudomonas chlororaphis strain MA342 | PRORADIX® | Rhizoctonia spp., Helmintosporium solani, Fusarium spp. |
Pseudomonas chlororaphis strain 63-28 | AtEze® | Pythium spp., Rhizoctonia solani, and Fusarium oxysporum |
Streptomyces lydicus strain WYEC 108 | ACTINOVATE® AG | Rhizoctonia spp., Verticillium spp., Phytophthora spp., Fusarium spp., Alternaria spp., Botrytis spp. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maake, T.W.; Sibisi, P. Microbial Antagonists for the Control of Plant Diseases in Solanaceae Crops: Current Status, Challenges, and Global Perspectives. Bacteria 2025, 4, 29. https://doi.org/10.3390/bacteria4030029
Maake TW, Sibisi P. Microbial Antagonists for the Control of Plant Diseases in Solanaceae Crops: Current Status, Challenges, and Global Perspectives. Bacteria. 2025; 4(3):29. https://doi.org/10.3390/bacteria4030029
Chicago/Turabian StyleMaake, Takalani Whitney, and Phumzile Sibisi. 2025. "Microbial Antagonists for the Control of Plant Diseases in Solanaceae Crops: Current Status, Challenges, and Global Perspectives" Bacteria 4, no. 3: 29. https://doi.org/10.3390/bacteria4030029
APA StyleMaake, T. W., & Sibisi, P. (2025). Microbial Antagonists for the Control of Plant Diseases in Solanaceae Crops: Current Status, Challenges, and Global Perspectives. Bacteria, 4(3), 29. https://doi.org/10.3390/bacteria4030029