Biologically Relevant Methods to Test How Microbes Colonize Maize Styles (Silks): Case Study of a Pantoea Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Biological Materials
2.2. Method 1: Testing the Ability of a Microbe to Be Taken Up from the Environment, Colonize Silks, and Subsequently Migrate Toward Ovules
2.3. Method 2: Method to Test the Competency of a Microbe to Colonize Silks from the Environment (Silk Tips) Versus from the Maternal Parent (Cob Base)
3. Results
3.1. Results from Method 1: Testing the Ability of a Microbe to Be Taken up from the Environment, Colonize Silks, and Subsequently Migrate Toward Ovules
3.2. Results from Method 2: Testing the Competency of a Microbe to Colonize Silks from the Environment (Silk Tips) Versus Maternal Parent (Cob Base)
4. Discussion
4.1. Directional Colonization of Maize Silks by Pantoea Strain E04
4.2. The Validity of Bacterial Inoculation of Silk Tips Attached to Intact Maize Cobs In Vitro
4.3. The Effect of Cob Orientation on Bacterial Colonization
4.4. The Effect of Cutting Silks on Bacterial Colonization
5. Limitations
6. Conclusions and Future Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauter, M. A Guided Tour: Pollen Tube Orientation in Flowering Plants. Chin. Sci. Bull. 2009, 54, 2376–2382. [Google Scholar] [CrossRef]
- Kiesselbach, T. The Structure and Reproduction of Corn, 50th Anniv; Brown, D., Schaefer, S., Eds.; Cold Spring Harbour Laboratory Press: New York, NY, USA, 1999. [Google Scholar]
- Sankaranarayanan, S.; Higashiyama, T. Capacitation in Plant and Animal Fertilization. Trends Plant Sci. 2018, 23, 129–139. [Google Scholar] [CrossRef]
- Thompson, M.E.H.; Raizada, M.N. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024, 12, 1473. [Google Scholar] [CrossRef]
- Thompson, M.E.H.; Raizada, M.N. Fungal Pathogens of Maize Gaining Free Passage along the Silk Road. Pathogens 2018, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, E.M.; Shrestha, A.; Rinne, J.; Lynch, M.D.J.; Shearer, C.R.; Limay-Rios, V.; Reid, L.M.; Raizada, M.N. Transmitting Silks of Maize Have a Complex and Dynamic Microbiome. Sci. Rep. 2021, 11, 1–17. [Google Scholar] [CrossRef]
- Thompson, M.E.H.; Shrestha, A.; Rinne, J.; Limay-Rios, V.; Reid, L.; Raizada, M.N. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens 2023, 12, 1322. [Google Scholar] [CrossRef]
- Thompson, M.E.H. Discovery and Testing of Pollinated Maize Silk-Associated Microbes Including Microbiome Assisted Selection of Biocontrol Agents against Fusarium graminearum. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2023. [Google Scholar]
- Mitter, B.; Pfaffenbichler, N.; Flavell, R.; Compant, S.; Antonielli, L.; Petric, A.; Berninger, T.; Naveed, M.; Sheibani-Tezerji, R.; von Maltzahn, G.; et al. A New Approach to Modify Plant Microbiomes and Traits by Introducing Beneficial Bacteria at Flowering into Progeny Seeds. Front. Microbiol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Turner, T.R.; James, E.K.; Poole, P.S. The Plant Microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, S.; Xu, L.; Zou, Y.; Song, W. Study on Diversity of Endophytic Bacterial Communities in Seeds of Hybrid Maize and Their Parental Lines. Arch. Microbiol. 2012, 194, 1001–1012. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, J.; Lee, K.K.; Lee, Y.H. Longitudinal Transmission of Bacterial and Fungal Communities from Seed to Seed in Rice. Commun. Biol. 2022, 5, 772. [Google Scholar] [CrossRef]
- Frank, A.C.; Guzmán, J.P.S.; Shay, J.E. Transmission of Bacterial Endophytes. Microorganisms 2017, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Bacon, C.W.; Yates, I.E.; Hinton, D.M.; Meredith, F. Biological Control of Fusarium moniliforme in Maize. Environ. Health Perspect. 2001, 109, 325–332. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhang, R.; Xu, T.; Zhao, J.; Liu, Y. Diversity of Endophytic Bacteria in Hybrid Maize Seeds and Bacillus mojavensis J2416-7 May Be Capable of Vertical Transmission. Arch. Microbiol. 2022, 204, 213. [Google Scholar] [CrossRef] [PubMed]
- Truyens, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Bacterial Seed Endophytes: Genera, Vertical Transmission and Interaction with Plants. Environ. Microbiol. Rep. 2015, 7, 40–50. [Google Scholar] [CrossRef]
- Ambika Manirajan, B.; Ratering, S.; Rusch, V.; Schwiertz, A.; Geissler-Plaum, R.; Cardinale, M.; Schnell, S. Bacterial Microbiota Associated with Flower Pollen Is Influenced by Pollination Type, and Shows a High Degree of Diversity and Species-Specificity. Environ. Microbiol. 2016, 18, 5161–5174. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, E.M.; Shrestha, A.; Reid, M.; McFadyen, B.J.; Raizada, M.N. Conservation and Diversity of the Pollen Microbiome of Pan-American Maize Using PacBio and MiSeq. Front. Microbiol. 2023, 14, 1276241. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Rios, V.L.; Brettingham, D.J.L.; Raizada, M. Maize Pollen Carry Bacteria That Suppress a Fungal Pathogen That Enters through the Male Gamete Fertilization Route. Front. Plant. Sci. 2024, 14, 1286199. [Google Scholar] [CrossRef]
- Miller, S.S.; Reid, L.M.; Harris, L.J. Colonization of Maize Silks by Fusarium graminearum, the Causative Organism of Gibberella Ear Rot. Can. J. Botany 2007, 85, 369–376. [Google Scholar] [CrossRef]
- Thompson, M.E.H.; Raizada, M.N. Protocols to Enable Fluorescence Microscopy of Microbial Interactions on Living Maize Silks (Style Tissue). J. Microbiol. Methods 2024, 225, 107027. [Google Scholar] [CrossRef] [PubMed]
- Westgate, M.E.; Boyer, J.S. Osmotic Adjustment and the Inhibition of Leaf, Root, Stem. Planta 1985, 164, 540–549. [Google Scholar] [CrossRef]
- Mishra, A.; Chauhan, P.S.; Chaudhry, V.; Tripathi, M.; Nautiyal, C.S. Rhizosphere Competent Pantoea agglomerans Enhances Maize (Zea mays) and Chickpea (Cicer arietinum L.) Growth, without Altering the Rhizosphere Functional Diversity. Antonie Van Leeuwenhoek 2011, 100, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, J.H.; Kang, B.R.; Rong, X.; Gardener, B.B.M.; Ji, H.J.; Park, C.S.; Kim, Y.C. Draft Genome Sequence of Pantoea ananatis B1-9, a Nonpathogenic Plant Growth-Promoting Bacterium. J Bacteriol 2012, 194, 729. [Google Scholar] [CrossRef] [PubMed]
- Montañez, A.; Abreu, C.; Gill, P.R.; Hardarson, G.; Sicardi, M. Biological Nitrogen Fixation in Maize (Zea mays, L.) by 15N Isotope-Dilution and Identification of Associated Culturable Diazotrophs. Biol. Fertil. Soils. 2009, 45, 253–263. [Google Scholar] [CrossRef]
- Sammer, U.F.; Reiher, K.; Spiteller, D.; Wensing, A.; Völksch, B. Assessment of the Relevance of the Antibiotic 2-Amino-3-(Oxirane-2,3-Dicarboxamido)-Propanoyl-Valine from Pantoea agglomerans Biological Control Strains against Bacterial Plant Pathogens. Microbiologyopen 2012, 1, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Pusey, P.L.; Stockwell, V.O.; Reardon, C.L.; Smits, T.H.M.; Duffy, B. Antibiosis Activity of Pantoea agglomerans Biocontrol Strain E325 against Erwinia amylovora on Apple Flower Stigmas. Phytopathology 2011, 101, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Cañamás, T.P.; Viñas, I.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N. Acid Tolerance Response Induced in the Biocontrol Agent Pantoea agglomerans CPA-2 and Effect on Its Survival Ability in Acidic Environments. Microbiol. Res. 2009, 164, 438–450. [Google Scholar] [CrossRef]
- Deroo, W.; De Troyer, L.; Dumoulin, F.; De Saeger, S.; De Boevre, M.; Vandenabeele, S.; De Gelder, L.; Audenaert, K. A Novel in Planta Enrichment Method Employing Fusarium graminearum-Infected Wheat Spikes to Select for Competitive Biocontrol Bacteria. Toxins 2022, 14, 222. [Google Scholar] [CrossRef]
- Sheibani-Tezerji, R.; Naveed, M.; Jehl, M.A.; Sessitsch, A.; Rattei, T.; Mitter, B. The Genomes of Closely Related Pantoea ananatis Maize Seed Endophytes Having Different Effects on the Host Plant Differ in Secretion System Genes and Mobile Genetic Elements. Front. Microbiol. 2015, 6, 440. [Google Scholar] [CrossRef]
- Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. Phylogeny and Identification of Pantoea Species Associated with Plants, Humans and the Natural Environment Based on Multilocus Sequence Analysis (MLSA). Syst. Appl. Microbiol. 2008, 31, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, S.; Guayazán-Palacios, N.; Steinbrenner, A.D. Molecular Tug-of-War: Plant Immune Recognition of Herbivory. Plant Cell. 2022, 34, 1497–1513. [Google Scholar] [CrossRef]
- Toyota, M.; Betsuyaku, S. In Vivo Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. Plant Cell Physiol. 2022, 63, 1391–1404. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Mittler, R. Reactive Oxygen Species-Dependent Wound Responses in Animals and Plants. Free. Radic. Biol. Med. 2012, 53, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How Do Plants Defend Themselves against Pathogens-Biochemical Mechanisms and Genetic Interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.N.; Tanveer, M.; Abbas, A.; Yildirim, M.; Shah, A.A.; Ahmad, M.I.; Wang, Z.; Sun, W.; Song, Y. Combating Dual Challenges in Maize under High Planting Density: Stem Lodging and Kernel Abortion. Front. Plant Sci. 2021, 12, 699085. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Le Bail, A.; Daiker, V.; Klima, J.; Richter, P.; Lebert, M. Identification of a Flagellar Protein Implicated in the Gravitaxis in the Flagellate Euglena gracilis. Sci. Rep. 2018, 8, 7605. [Google Scholar] [CrossRef] [PubMed]
- Weller-Stuart, T.; Toth, I.; De Maayer, P.; Coutinho, T. Swimming and Twitching Motility Are Essential for Attachment and Virulence of Pantoea ananatis in Onion Seedlings. Mol. Plant Pathol. 2017, 18, 734–745. [Google Scholar] [CrossRef]
- Griffis, A.H.N.; Groves, N.R.; Zhou, X.; Meier, I. Nuclei in Motion: Movement and Positioning of Plant Nuclei in Development, Signaling, Symbiosis, and Disease. Front. Plant Sci. 2014, 5, 129. [Google Scholar] [CrossRef] [PubMed]
- Debruin, J.L.; Hemphill, B.; Schussler, J.R. Silk Development and Kernel Set in Maize as Related to Nitrogen Stress. Crop. Sci. 2018, 58, 2581–2592. [Google Scholar] [CrossRef]
- Prusky, D.; Romanazzi, G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. Annu. Rev. Phytopathol. 2023, 61, 279–300. [Google Scholar] [CrossRef]
- Woo, S.L.; Pepe, O. Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1801. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, M.E.H.; Raizada, M.N. Biologically Relevant Methods to Test How Microbes Colonize Maize Styles (Silks): Case Study of a Pantoea Strain. Bacteria 2024, 3, 287-298. https://doi.org/10.3390/bacteria3040019
Thompson MEH, Raizada MN. Biologically Relevant Methods to Test How Microbes Colonize Maize Styles (Silks): Case Study of a Pantoea Strain. Bacteria. 2024; 3(4):287-298. https://doi.org/10.3390/bacteria3040019
Chicago/Turabian StyleThompson, Michelle E. H., and Manish N. Raizada. 2024. "Biologically Relevant Methods to Test How Microbes Colonize Maize Styles (Silks): Case Study of a Pantoea Strain" Bacteria 3, no. 4: 287-298. https://doi.org/10.3390/bacteria3040019
APA StyleThompson, M. E. H., & Raizada, M. N. (2024). Biologically Relevant Methods to Test How Microbes Colonize Maize Styles (Silks): Case Study of a Pantoea Strain. Bacteria, 3(4), 287-298. https://doi.org/10.3390/bacteria3040019