Tuberculosis Infection and Comorbidities: A Public Health Issue in Baja California, Mexico
Abstract
:1. Tuberculosis
1.1. Introduction
1.2. General Mechanisms and Immune Evasion of Tuberculosis (TB)
2. The Current Situation Regarding Tuberculosis Infections and Their Related Comorbidities in Baja California
2.1. Migration
2.2. Human Immunodeficiency Virus (HIV)
2.3. Diabetes
3. Detecting and Implementing Analytical Tools Early Are Crucial for Managing Tuberculosis in the Migratory Region
3.1. New Analytical Tools
3.2. Management of the Tuberculosis Program in Mexico
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2023; WHO, Ed.; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Költringer, F.A.; Annerstedt, K.S.; Boccia, D.; Carter, D.J.; Rudgard, W.E. The social determinants of national tuberculosis incidence rates in 116 countries: A longitudinal ecological study between 2005–2015. BMC Public Health 2023, 23, 337. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Aaby, P.; Behr, M.A.; Donald, P.R.; Kaufmann, S.H.E.; Netea, M.G.; Mandalakas, A.M. 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect. Dis. 2022, 22, e2–e12. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.; Vasishtha, G.; Mohanty, S.K. Association of multidimensional poverty and tuberculosis in India. BMC Public Health 2021, 21, 2065. [Google Scholar] [CrossRef]
- Muñiz-Salazar, R.; Le, T.; Cuevas-Mota, J.; González-Fagoaga, J.E.; Zapata-Garibay, R.; Ruiz-Tamayo, P.S.; Robles-Flores, J.; Garfein, R.S. Impact of COVID-19 on tuberculosis detection and treatment in Baja California, México. Front. Public Health 2022, 10, 921596. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.; Zhang, A.; Quan, B.; Duan, C.; Liang, M.; Yang, J. Trends of type 2 diabetes with pulmonary tuberculosis patients, 2013–2022, and changes after the coronavirus disease 2019 (COVID-19) pandemic. Tuberculosis 2024, 146, 102499. [Google Scholar] [CrossRef] [PubMed]
- Gobierno de Baja California. Programa Sectorial de Salud 2022–2027; Gobierno de Baja California: Mexicali, Mexico, 2023; Volume 20, pp. 2–149. [Google Scholar]
- Ochoa, S.R.R.; Pirrón, T.d.l.Á.J.; Trujillo, Z.P.M.; Martínez, R.M.V.; Luna, R.A.R.; Padilla, I.C.; Aguilera, R.d.C.G.; Ramírez, M.d.l.Á.A.C. Mortalidad por tuberculosis en México durante el decenio 2011–2020. South Fla. J. Health 2023, 4, 102–116. [Google Scholar] [CrossRef]
- Harishankar, M.; Selvaraj, P.; Bethunaickan, R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front. Med. 2018, 5, 213. [Google Scholar] [CrossRef] [PubMed]
- Ovsyannikova, I.G.; Haralambieva, I.H.; Vierkant, R.A.; O’Byrne, M.M.; Jacobson, R.M.; Poland, G.A. Effects of vitamin A and D receptor gene polymorphisms/haplotypes on immune responses to measles vaccine. Pharmacogenetics Genom. 2012, 22, 20–31. [Google Scholar] [CrossRef]
- Harriff, M.J.; Cansler, M.E.; Toren, K.G.; Canfield, E.T.; Kwak, S.; Gold, M.C.; Lewinsohn, D.M. Human Lung Epithelial Cells Contain Mycobacterium tuberculosis in a Late Endosomal Vacuole and Are Efficiently Recognized by CD8+ T Cells. PLoS ONE 2014, 9, e97515. [Google Scholar] [CrossRef] [PubMed]
- Queval, C.J.; Brosch, R.; Simeone, R. The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. Front. Microbiol. 2017, 8, 2284. [Google Scholar] [CrossRef] [PubMed]
- Lerner, T.R.; Borel, S.; Gutierrez, M.G. The innate immune response in human tuberculosis. Cell. Microbiol. 2015, 17, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.R.; Muñoz-Torrico, M.; Duarte, R.; Galvão, T.; Bonini, E.H.; Arbex, F.F.; Arbex, M.A.; Augusto, V.M.; Rabahi, M.F.; Mello, F.C.Q. Risk factors for tuberculosis: Diabetes, smoking, alcohol use, and the use of other drugs. J. Bras. Pneumol. 2018, 44, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Grigsby, S.J.; Philips, J.A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2022, 20, 750–766. [Google Scholar] [CrossRef] [PubMed]
- Baja California State Government. Moderniza Baja California Métodos Diagnósticos para la Detección de la Tuberculosis; Baja California State Government: Mexicali, Mexico, 2024.
- Sánchez, R.P.G. Boletín Epidemiológico Sistema Nacional de Vigilancia Epidemiológica/Sistema Único de Información. Available online: http://www.gob.mx/salud/acciones-y-programas/direccion-general-de-epidemiologia-boletin-epidemiologico (accessed on 4 June 2024).
- Ordaz-Vázquez, A.; Torres-González, P.; Cruz-Hervert, P.; Ferreyra-Reyes, L.; Delgado-Sánchez, G.; García-García, L.; Kato-Maeda, M.; Ponce-De-León, A.; Sifuentes-Osornio, J.; Bobadilla-Del-Valle, M. Genetic diversity and primary drug resistance transmission in Mycobacterium tuberculosis in southern Mexico. Infect. Genet. Evol. 2021, 93, 104994. [Google Scholar] [CrossRef] [PubMed]
- Flores-López, C.A.; Zenteno-Cuevas, R.; Laniado-Laborín, R.; Reynaud, Y.; García-Ortiz, R.A.; González, Y.M.J.A.; Rivera, S.; Vázquez-Chacón, C.A.; Vaughan, G.; Martínez-Guarneros, J.A.; et al. Molecular epidemiology of Mycobacterium tuberculosis in Baja California, Mexico: A result of human migration? Infect. Genet. Evol. 2017, 55, 378–383. [Google Scholar] [CrossRef]
- Vågene, Å.J.; Honap, T.P.; Harkins, K.M.; Rosenberg, M.S.; Giffin, K.; Cárdenas-Arroyo, F.; Leguizamón, L.P.; Arnett, J.; Buikstra, J.E.; Herbig, A.; et al. Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nat. Commun. 2022, 13, 1195. [Google Scholar] [CrossRef]
- Ranzani, O.T.; Pescarini, J.M.; Martinez, L.; Garcia-Basteiro, A.L. Increasing tuberculosis burden in Latin America: An alarming trend for global control efforts. BMJ Glob. Health 2021, 6, e005639. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Andrade, I.; Acosta-Loya, J.; Bravo-Rodríguez, G.; Martínez-Lozano, F.; Enríquez-Porras, A.; Espinoza-Hernández, M.; Durán-Peña, O.; Orozco-Béjar, I. Epidemiology of pulmonary tuberculosis in migrant population. Neumol. Cirugía Tórax 2018, 77, 125–131. [Google Scholar]
- Naik, P.A.; Owolabi, K.M.; Yavuz, M.; Zu, J. Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Solitons Fractals 2020, 140, 110272. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Zhang, Q.; Wang, Q.; Chai, L.; Chen, H.; Li, D.; Qiu, Y.; Wang, Y.; Shen, N.; et al. Epidemiological features and temporal trends of HIV-negative tuberculosis burden from 1990 to 2019: A retrospective analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e074134. [Google Scholar] [CrossRef] [PubMed]
- Kousignian, I.; Sautereau, A.; Vigouroux, C.; Cros, A.; Kretz, S.; Viard, J.P.; Slama, L. Diagnosis, risk factors and management of diabetes mellitus in HIV-infected persons in France: A real-life setting study. PLoS ONE 2021, 16, e0250676. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Lake, J.E.; Currier, J.S. Metabolic disease in HIV infection. Lancet Infect. Dis. 2013, 13, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Lagathu, C.; Béréziat, V.; Gorwood, J.; Fellahi, S.; Bastard, J.-P.; Vigouroux, C.; Boccara, F.; Capeau, J. Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert Opin. Drug Saf. 2019, 18, 829–840. [Google Scholar] [CrossRef]
- Al Mohajer, M. Designing a Local Policy to Reduce HIV in Mexico City. Avicenna J. Med. 2023, 13, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Gobierno de México. Informe Trimestral Sobre el VIH/Sida en México, Segundo Trimestre de 2021; Secretaría de Salud: Mexico City, Mexico, 2021. [Google Scholar]
- INEGI. Estadísticas a Propósito del Mundial de la Lucha Contra el VIH/SIDA 2022; INEGI: Aguascalientes, Mexico, 2022. [Google Scholar]
- Shamah-Levy, T.; Vielma-Orozco, E.; Heredia-Hernández, O.; Romero-Martínez, M.; Mojica-Cuevas, J.; Cuevas-Nasu, L.; Santaella-Castell, J.A.; Rivera-Dommarco, J. Encuesta Nacional de Salud y Nutrición 2018–19: Resultados Nacionales; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2020. [Google Scholar]
- Badawi, A.; Gregg, B.; Vasileva, D. Systematic analysis for the relationship between obesity and tuberculosis. Public Health 2020, 186, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Odone, A.; Houben, R.M.; White, R.G.; Lönnroth, K. The effect of diabetes and undernutrition trends on reaching 2035 global tuberculosis targets. Lancet Diabetes Endocrinol. 2014, 2, 754–764. [Google Scholar] [CrossRef]
- Panda, S.; Arora, A.; Luthra, K.; Mohan, A.; Vikram, N.K.; Kumar Gupta, N.; Singh, A. Hyperglycemia modulates M1/M2 macrophage polarization in chronic diabetic patients with pulmonary tuberculosis infection. Immunobiology 2024, 229, 152787. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Seelan, D.M.; Faisal, S.; Arora, A.; Luthra, K.; Palanichamy, J.K.; Mohan, A.; Vikram, N.K.; Gupta, N.K.; Ramakrishnan, L.; et al. Chronic hyperglycemia drives alterations in macrophage effector function in pulmonary tuberculosis. Eur. J. Immunol. 2022, 52, 1595–1609. [Google Scholar] [CrossRef]
- Lin, H.H.; Wu, C.Y.; Wang, C.H.; Fu, H.; Lönnroth, K.; Chang, Y.C.; Huang, Y.T. Association of Obesity, Diabetes, and Risk of Tuberculosis: Two Population-Based Cohorts. Clin. Infect. Dis. 2018, 66, 699–705. [Google Scholar] [CrossRef]
- Arias, L.; Goig, G.A.; Cardona, P.; Torres-Puente, M.; Díaz, J.; Rosales, Y.; Garcia, E.; Tapia, G.; Comas, I.; Vilaplana, C.; et al. Influence of Gut Microbiota on Progression to Tuberculosis Generated by High Fat Diet-Induced Obesity in C3HeB/FeJ Mice. Front. Immunol. 2019, 10, 2464. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Hernández, G.A.; Pérez-Martínez, D.; Ortiz-León, M.C.; Muñiz-Salazar, R.; Licona-Cassani, C.; Zenteno-Cuevas, R. Mutational Dynamics Related to Antibiotic Resistance in M. tuberculosis Isolates from Serial Samples of Patients with Tuberculosis and Type 2 Diabetes Mellitus. Microorganisms 2024, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Maji, A.; Misra, R.; Dhakan, D.B.; Gupta, V.; Mahato, N.K.; Saxena, R.; Mittal, P.; Thukral, N.; Sharma, E.; Singh, A.; et al. Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ. Microbiol. 2018, 20, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Zazueta, O.E.; Garfein, R.S.; Cano-Torres, J.O.; Méndez-Lizárraga, C.A.; Rodwell, T.C.; Muñiz-Salazar, R.; Ovalle-Marroquín, D.F.; Yee, N.G.; Serafín-Higuera, I.R.; González-Reyes, S.; et al. Prevalence of SARS-CoV-2 infection in Baja California, Mexico: Findings from a community-based survey in February 2021 in the Mexico-United States border. PLoS Glob. Public Health 2022, 2, e0000820. [Google Scholar] [CrossRef] [PubMed]
- Garfein, R.S.; Laniado-Laborin, R.; Rodwell, T.C.; Lozada, R.; Deiss, R.; Burgos, J.L.; Cuevas-Mota, J.; Cerecer, P.; Moser, K.; Volker, M.L.; et al. Latent Tuberculosis among Persons at Risk for Infection with HIV, Tijuana, Mexico. Emerg. Infect. Dis. J. 2010, 16, 757. [Google Scholar] [CrossRef] [PubMed]
- Viani, R.M.; Lopez, G.; Chacón-Cruz, E.; Hubbard, P.; Spector, S.A. Poor outcome is associated with delayed tuberculosis diagnosis in HIV-infected children in Baja California, Mexico. Int. J. Tuberc. Lung Dis. 2008, 12, 411–416. [Google Scholar]
- Perea-Jacobo, R.; Muñiz-Salazar, R.; Laniado-Laborín, R.; Zenteno-Cuevas, R.; Cabello-Pasini, A.; Ochoa-Terán, A.; Radilla-Chávez, P. SLCO1B1 and SLC10A1 polymorphism and plasma rifampin concentrations in patients with co-morbidity tuberculosis-diabetes mellitus in Baja California, Mexico. Tuberculosis 2022, 136, 102248. [Google Scholar] [CrossRef]
- Pérez, A.; Brown, H.S.; Restrepo, B.I. Association between tuberculosis and diabetes in the mexican border and non-border regions of Texas. Am. J. Trop. Med. Hyg. 2006, 74, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Xu, Z.; Hu, Y.-Q.; He, Y.-S.; Dan, Y.-L.; Wu, Q.; Fang, X.-H.; Pan, H.-F. Association between ambient air pollution and tuberculosis risk: A systematic review and meta-analysis. Chemosphere 2021, 277, 130342. [Google Scholar] [CrossRef]
- Smith, G.S.; Eeden, S.K.V.D.; Garcia, C.; Shan, J.; Baxter, R.; Herring, A.H.; Richardson, D.B.; Rie, A.V.; Emch, M.; Gammon, M.D. Air Pollution and Pulmonary Tuberculosis: A Nested Case—Control Study among Members of a Northern California Health Plan. Environ. Health Perspect. 2016, 124, 761–768. [Google Scholar] [CrossRef]
- Smith, G.S.; Van Den Eeden, S.K.; Baxter, R.; Shan, J.; Van Rie, A.; Herring, A.H.; Richardson, D.B.; Emch, M.; Gammon, M.D. Cigarette smoking and pulmonary tuberculosis in northern California. J. Epidemiol. Community Health 2015, 69, 568. [Google Scholar] [CrossRef]
- Bakhsh, Y.; Readhead, A.; Flood, J.; Barry, P. Association of Area-Based Socioeconomic Measures with Tuberculosis Incidence in California. J. Immigr. Minor. Health 2023, 25, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Bojorquez, I.; Barnes, R.F.W.; Flood, J.; López-Gatell, H.; Garfein, R.S.; Bäcker, C.E.; Alpuche, C.; Vinetz, J.M.; Catanzaro, A.; Kato-Maeda, M.; et al. Multidrug-Resistant Tuberculosis among Patients in Baja California, Mexico, and Hispanic Patients in California. Am. J. Public Health 2013, 103, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Aispuro Pérez, A.; Osuna-Martínez, U.; Espinoza-Gallardo, J.A.; Dorantes-Álvarez, L.A.; Inzunza-Leyva, G.K.; Dorantes-Bernal, K.E.; Quiñonez-Bastidas, G.N. Prevalence of Drug-Resistant Tuberculosis in HIV-Positive and Diabetic Patients in Sinaloa, Mexico: A Retrospective Cross-Sectional Study. Trop. Med. Infect. Dis. 2024, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Campelo, T.A.; Cardoso de Sousa, P.R.; Nogueira, L.d.L.; Frota, C.C.; Zuquim Antas, P.R. Revisiting the methods for detecting Mycobacterium tuberculosis: What has the new millennium brought thus far? Access Microbiol. 2021, 3, 000245. [Google Scholar] [CrossRef] [PubMed]
- Piubello, A.; Souleymane, M.B.; Hassane-Harouna, S.; Yacouba, A.; Lempens, P.; Assao-Neino, M.M.; Maman-Lawan, I.; Attaher, S.; Moustapha, B.; Soumana, A.; et al. Management of multidrug-resistant tuberculosis with shorter treatment regimen in Niger: Nationwide programmatic achievements. Respir. Med. 2020, 161, 105844. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, H.; Jia, X.; Wang, X.; Xu, P. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Tuberculosis 2021, 128, 102083. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.; Kohli, M.; Weber, S.F.; Suresh, A.; Schumacher, S.G.; Denkinger, C.M.; Pai, M. Advances in Molecular Diagnosis of Tuberculosis. J. Clin. Microbiol. 2020, 58, e01582-19. [Google Scholar] [CrossRef] [PubMed]
- Tortoli, E.; Mariottini, A.; Mazzarelli, G. Evaluation of INNO-LiPA MYCOBACTERIA v2: Improved Reverse Hybridization Multiple DNA Probe Assay for Mycobacterial Identification. J. Clin. Microbiol. 2003, 41, 4418–4420. [Google Scholar] [CrossRef]
- Suffys, P.N.; Rocha, A.d.S.; Oliveira, M.d.; Campos, C.E.D.; Barreto, A.M.W.; Portaels, F.; Rigouts, L.; Wouters, G.; Jannes, G.; Reybroeck, G.v.; et al. Rapid Identification of Mycobacteria to the Species Level Using INNO-LiPA Mycobacteria, a Reverse Hybridization Assay. J. Clin. Microbiol. 2001, 39, 4477–4482. [Google Scholar] [CrossRef]
- Sinha, P.; Srivastava, G.N.; Tripathi, R.; Mishra, M.N.; Anupurba, S. Detection of mutations in the rpoB gene of rifampicin-resistant Mycobacterium tuberculosis strains inhibiting wild type probe hybridization in the MTBDR plus assay by DNA sequencing directly from clinical specimens. BMC Microbiol. 2020, 20, 284. [Google Scholar] [CrossRef] [PubMed]
- Broger, T.; Sossen, B.; du Toit, E.; Kerkhoff, A.D.; Schutz, C.; Ivanova Reipold, E.; Ward, A.; Barr, D.A.; Macé, A.; Trollip, A.; et al. Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV: A diagnostic accuracy study. Lancet Infect. Dis. 2019, 19, 852–861. [Google Scholar] [CrossRef]
- Zaid, M.H.M.; Abdullah, J.; Yusof, N.A.; Wasoh, H.; Sulaiman, Y.; Noh, M.F.M.; Issa, R. Reduced Graphene Oxide/TEMPO-Nanocellulose Nanohybrid-Based Electrochemical Biosensor for the Determination of Mycobacterium tuberculosis. J. Sens. 2020, 2020, 4051474. [Google Scholar] [CrossRef]
- Mohamad, F.S.; Mat Zaid, M.H.; Abdullah, J.; Zawawi, R.M.; Lim, H.N.; Sulaiman, Y.; Abdul Rahman, N. Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis. Sensors 2017, 17, 2789. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Tong, Y.; Tan, W.; Chen, Z. Detection of Mycobacterium tuberculosis IS6110 gene fragment by fluorescent biosensor based on FRET between two-dimensional metal-organic framework and quantum dots-labeled DNA probe. Anal. Chim. Acta 2021, 1186, 339090. [Google Scholar] [CrossRef]
- Tai, M.J.Y.; Perumal, V.; Gopinath, S.C.B.; Raja, P.B.; Ibrahim, M.N.M.; Jantan, I.N.; Suhaimi, N.S.H.; Liu, W.-W. Laser-scribed graphene nanofiber decorated with oil palm lignin capped silver nanoparticles: A green biosensor. Sci. Rep. 2021, 11, 5475. [Google Scholar] [CrossRef]
- Barroso, T.G.; Martins, R.C.; Fernandes, E.; Cardoso, S.; Rivas, J.; Freitas, P.P. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. Biosens. Bioelectron. 2018, 100, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Esgueva, M.; Fernández-Simon, R.; Monforte-Cirac, M.L.; López-Calleja, A.I.; Fortuño, B.; Viñuelas-Bayon, J. Use of MALDI-TOF MS (Bruker Daltonics) for identification of Mycobacterium species isolated directly from liquid medium. Enfermedades Infecc. Microbiol. Clínica 2021, 39, 241–243. [Google Scholar] [CrossRef]
- Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S.P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075. [Google Scholar] [CrossRef]
- Dohál, M.; Porvazník, I.; Pršo, K.; Rasmussen, E.M.; Solovič, I.; Mokrý, J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis 2020, 123, 101946. [Google Scholar] [CrossRef]
- Smith, C.; Halse Tanya, A.; Shea, J.; Modestil, H.; Fowler Randal, C.; Musser Kimberlee, A.; Escuyer, V.; Lapierre, P. Assessing Nanopore Sequencing for Clinical Diagnostics: A Comparison of Next-Generation Sequencing (NGS) Methods for Mycobacterium tuberculosis. J. Clin. Microbiol. 2020, 59, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Njie, G.J.; Morris, S.B.; Woodruff, R.Y.; Moro, R.N.; Vernon, A.A.; Borisov, A.S. Isoniazid-Rifapentine for Latent Tuberculosis Infection: A Systematic Review and Meta-analysis. Am. J. Prev. Med. 2018, 55, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Tomazini, B.M.; Besen, B.; Taniguchi, L.U.; Zampieri, F.G.; Cavalcanti, A.B. Association between piperacillin/tazobactam use and acute kidney injury in critically ill patients: A retrospective multicentre cohort study. J. Antimicrob. Chemother. 2024, 79, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Flipo, M.; Frita, R.; Bourotte, M.; Martínez-Martínez, M.S.; Boesche, M.; Boyle, G.W.; Derimanov, G.; Drewes, G.; Gamallo, P.; Ghidelli-Disse, S.; et al. The small-molecule SMARt751 reverses Mycobacterium tuberculosis resistance to ethionamide in acute and chronic mouse models of tuberculosis. Sci. Transl. Med. 2022, 14, eaaz6280. [Google Scholar] [CrossRef]
- Perea-Jacobo, R.; Paredes-Gutiérrez, G.R.; Guerrero-Chevannier, M.Á.; Flores, D.-L.; Muñiz-Salazar, R. Machine Learning of the Whole Genome Sequence of Mycobacterium tuberculosis: A Scoping PRISMA-Based Review. Microorganisms 2023, 11, 1872. [Google Scholar] [CrossRef] [PubMed]
- Yague-Santiago, Z.L.; Ramírez-Díaz, M.d.P.; Velázquez- Ramírez, D.D.; Zenteno-Cuevas, R.; Luna-Hernández, J.F. Factors associated with tuberculosis-diabetes mellitus type 2 binomial in rural population of Oaxaca, Mexico. J. Infect. Dev. Ctries. 2022, 16, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Joya, M.C. Panorama of Tuberculosis in Mexico Focusing on the Northern Border. Voices Mex. 2018, 98, 118–125. [Google Scholar]
- Prakoso, D.A.; Istiono, W.; Mahendradhata, Y.; Arini, M. Acceptability and feasibility of tuberculosis-diabetes mellitus screening implementation in private primary care clinics in Yogyakarta, Indonesia: A qualitative study. BMC Public Health 2023, 23, 1908. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines Approved by the Guidelines Review Committee. In WHO Consolidated Guidelines on Tuberculosis: Module 2: Screening—Systematic Screening for Tuberculosis Disease; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
Factor | Shared Aspects and Importance | Regional Impact in Baja California | Reference |
---|---|---|---|
COVID-19 | Immunological imbalance. Co-infection may increase the risk of both diseases’ progression. COVID-19 infection may activate latent tuberculosis. | The seroprevalence of COVID-19 infection until February 2021 (in the highest point of the pandemic) was similar to other states in Mexico. There seems to be no association with the fact that it is a border area with higher infection rates, but other factors such as vulnerability, poverty, hygiene, and nutritional changes may induce worst infection scenarios. | [41] |
HIV | Close relationship and worst scenarios of the disease. The immunological impairment, and poor treatment response are frequent. | The PreveTB study in Tijuana, Baja California, measured the relationship between TB and HIV in marginalized populations, with the latter having a prevalence of 4.2% in people living with tuberculosis, compared with 0.8% and 0.9% in the country general population. | [42] |
Some other studies have explored the phenomena of aggravation between tuberculosis in people living with HIV. A retrospective review of the medical records of all children with perinatally acquired HIV infection evaluated at Tijuana General Hospital in Baja California noticing cumulative hospital admissions from pneumonia, cough, anorexia, high morbidity, and mortality. | [43] | ||
Diabetes | Close association between diabetes and tuberculosis, especially in populations with low socio-economic status. | This comorbidity has been explored in Baja California analyzing the prevalence of SLCO1A1 and SLCO1B1 polymorphisms to elucidate the relationship with rifampicin resistance and pharmacokinetics although the high diversity in the Mexican population requires more studies. | [44] |
This association was also evaluated in Texas patients hospitalized in the 15 counties along the Mexican border. People living with diabetes were almost twice as likely to have tuberculosis after adjusting by sex, age, and race/ethnicity having these variables a strong association. | [45] | ||
Pollution | Directly linked to tuberculosis. The association with immunological changes has been assessed from levels such as PM2.5. | Although no data from Baja California have yet linked these variables, a 2021 review and meta-analysis showed that long-term exposure to particulate matter PM10, SO2 and NO2 was significantly associated with TB incidence. | [46] |
A nested case–control study within a cohort of Kaiser Permanente of Northern California showed through conditional logistic regression models that single pollutants with the highest odd ratios for tuberculosis were CO and NO2. | [47] | ||
Tobacco smoking | Directly linked to lung impaired immunological responses and worst responses to tuberculosis treatment. | Although no studies have been performed in Baja California, a nested case–control study among members of Kaiser Permanente Northern California (KPNC) explored this relation in the north California population, showing increased pulmonary TB risk among ever-smokers, current and past smokers. | [48] |
Low socio-economic status | Directly linked to immunosuppression, parasitism, malnutrition, and hygiene changes. | The area-based socio-economic status measures have been linked with tuberculosis incidence from data of the California TB registry on persons with active TB disease during 2012–2016 showing that persons living in census tracts with low status had higher TB incidence rates than those living in high status census tracts, assessed by education level, poverty, crowding or and the California Healthy Places Index. | [49] |
Deficit malnutrition | Directly linked to immunosuppression and parasitism. | Not yet analyzed as single relationships but as cumulative risk factors for disease. | |
Obesity or a high body mass index (BMI) | Directly linked to low-grade chronic inflammation. | Not yet analyzed as single relationships but as cumulative risk factors for disease. | |
Drug resistance | Linked to the presence of the other risk factors by neglecting the immune system and global health. | In 2013, an analysis showed that antituberculosis treatment was associated with multidrug-resistant TB in Mexico-born TB patients in California and other patients born elsewhere, noticing that they had greater odds of MDR-TB compared with U.S.-born patients. | [50] |
Although more specific information is still missing in Baja California, in another northern state of Mexico, the linked prevalence of drug-resistant strains was analyzed in HIV and T2DM patients, noticing how important it is to control the other comorbidities to protect high-risk populations. | [51] | ||
Migration | Linked to the presence of the other risk factors by neglecting the immune system and global health. | New studies have clustered most Baja California clinical isolates into three distinctive groups—San Diego and South America strains and other parts from other Mexican regions. Yet, at least 12% of the analyzed strains are autochthonous of Baja California. | [19] |
Tool/Technique | Description | Current Application in Baja California | Comments and Suggested Improvements |
---|---|---|---|
PCR (Polymerase Chain Reaction) | Molecular test with high sensitivity and specificity for detecting bacterial DNA in clinical samples. | Widely applied | Highly effective; improve access to equipment and training. |
Traditional Bacilloscopy and Cultures | Bacilloscopy for detecting acid-alcohol-resistant bacilli; cultures (e.g., Löwenstein–Jensen, BACTEC) for growing M. tuberculosis. | Common diagnostic method | Enhance sensitivity and reduce diagnosis time. |
Genotypic Tests | Includes NAATs and other tests for detecting genetic material of M. tuberculosis and antibiotic-resistant strains. | Used in advanced diagnostic settings | Increase availability and reduce costs. |
Other Tools and Techniques | |||
Tool/Technique | Description | Current Application | Comments and Suggested Improvements |
Rapid Diagnostic Tests | Includes the tuberculin skin test and tests for specific M. tuberculosis antigens. | Commonly used for quick diagnosis | Maintain availability and enhance accuracy with new antigen tests. |
Standard Treatment Regimens | Combine effective, well-tolerated antitubercular drugs, achieving high cure rates for drug-sensitive TB. | Standard practice in treatment | Continue monitoring drug efficacy and side effects. |
New Treatment Regimens for Drug-Resistant TB | Involves second-line drugs like bedaquiline and delamanid. | Increasing use in drug-resistant cases | Increase accessibility and monitor resistance patterns. |
HRCT (High-Resolution Computed Tomography) | Advanced imaging technique for visualizing TB lesions. | Used in specialized diagnostic settings | Expand access to imaging facilities. |
Biomarkers and Novel Biosensors | Emerging technologies like urinary lipoarabinomannan and various biosensors for rapid detection of TB. | Limited use; mostly in research | Further validation and integration into clinical practice. |
MALDI-TOF | Uses ionization and mass spectrometry for rapid identification of microorganisms. | Used in specialized laboratories | Improve database for better identification accuracy. |
Aspect | WHO Recommendations | Practices in Mexico | Comments and Suggestions for Improvement |
---|---|---|---|
First-Line Treatment Subsidy | The WHO recommends subsidizing essential TB medications to ensure accessibility. | The government subsidizes some first-line medications, but many therapies remain expensive and inaccessible. | Increase subsidies and make all essential medications more accessible to patients. |
Diagnostic Methods | The WHO promotes the use of modern diagnostic tools like Xpert® MTB/RIF, INNO-LIPA Rif TB kit, GenoType MTBDRplus, and sequencing technologies. | Uses advanced diagnostic tools, including Xpert® MTB/RIF and genotypic tests, but access varies across regions. | Expand access to advanced diagnostics, especially in underserved areas. |
Treatment of Drug-Sensitive TB | The standard treatment regimen includes isoniazid, rifampicin, pyrazinamide, and ethambutol, with short-course therapies as an alternative. | Follows the WHO regimen for drug-sensitive TB with high cure rates, including short-course therapies where applicable. | Maintain adherence to the WHO guidelines and consider expanding short-course therapy access. |
Treatment of Drug-Resistant TB (DR-TB) | The WHO recommends using second-line drugs and developing new medications. | Second-line therapies for DR-TB are not government funded, making them inaccessible for many low-income patients. | Increase government support for second-line treatments and explore new drug options. |
National Laboratory Network | The WHO emphasizes a standardized and coordinated national laboratory network for TB diagnosis. | The “Red Nacional de Laboratorios de Salud Pública para la Vigilancia de la Tuberculosis” follows standardized practices. | Strengthen and expand the capabilities of the national laboratory network. |
Special Programs and Binational Cooperation | The WHO encourages international cooperation and targeted interventions for TB, especially in high-risk areas. | Participates in the “Programa Binacional de Tuberculosis Esperanza y Amistad” and other cross-border initiatives. | Enhance binational collaboration and increase funding for these programs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Acevedo, G.N.; González-Vázquez, R.; Reyes-Pavón, D.; Torres-Maravilla, E. Tuberculosis Infection and Comorbidities: A Public Health Issue in Baja California, Mexico. Bacteria 2024, 3, 194-208. https://doi.org/10.3390/bacteria3030014
Hernández-Acevedo GN, González-Vázquez R, Reyes-Pavón D, Torres-Maravilla E. Tuberculosis Infection and Comorbidities: A Public Health Issue in Baja California, Mexico. Bacteria. 2024; 3(3):194-208. https://doi.org/10.3390/bacteria3030014
Chicago/Turabian StyleHernández-Acevedo, Gerson Ney, Raquel González-Vázquez, Diana Reyes-Pavón, and Edgar Torres-Maravilla. 2024. "Tuberculosis Infection and Comorbidities: A Public Health Issue in Baja California, Mexico" Bacteria 3, no. 3: 194-208. https://doi.org/10.3390/bacteria3030014
APA StyleHernández-Acevedo, G. N., González-Vázquez, R., Reyes-Pavón, D., & Torres-Maravilla, E. (2024). Tuberculosis Infection and Comorbidities: A Public Health Issue in Baja California, Mexico. Bacteria, 3(3), 194-208. https://doi.org/10.3390/bacteria3030014