Bacteremia Following Alkalihalobacillus clausii (Formerly Bacillus clausii) Administration in Immunosuppressed Adults: A Case Series
Abstract
:1. Introduction
2. Results
3. Discussion
Age (Years) | Patient Profile | Treatment | Antibiotic Susceptibility | Outcome | Authors | Year of Publication | Country |
---|---|---|---|---|---|---|---|
69 | Ventilator-associated pneumonia, BSA, progresses to acute diarrhea. | Vancomycin + Levofloxacin + Rifampicin | ND | Recovery | Nacinovich, F. et al. | 2017 [54] | Argentina |
71 | MI, catheter-associated infection, in treatment with BSA evolution for acute diarrhea. | Vancomycin + Levofloxacin | ND | Recovery | Nacinovich, F. et al. | 2017 [54] | Argentina |
ND | Pneumonia and Stage IV lung cancer. | ND | Resistance to clindamycin, penicillin, and tetracycline. | Discharge | Gargar, JD. et al. | 2019 [37] | ND |
ND | Pneumonia and Stage IV lung cancer. | ND | ND | Recovery | Gargar, JD. et al. | 2019 [37] | ND |
ND | Septic shock from ischemic colitis. | ND | ND | Recovery | Gargar, JD. et al. | 2019 [37] | ND |
5 months | Congenital heart disease, recurrent respiratory tract infections, repeated hospital/ICU admissions, BSA. | Vancomycin | Susceptibility to vancomycin and penicillin. | Discharge | Joshi, S. et al. | 2019 [41] | ND |
ND | DM 2, with decompressive craniotomy and BSA. | Teicoplanin | Susceptibility to ciprofloxacin and vancomycin. Penicillin resistant. | Discharge | Princess et al. | 2020 [38] | India |
87 | HT, EPOC, cholecystectomy, hypertension, urinary tract infection caused by Klebsiella pneumoniae. | Vancomycin + Cefepime | ND | Discharge | García, J. et al. | 2021 [50] | Colombia |
1 & 5 month | None. | Ceftriaxone, Ampicillin, Levofloxacin, Vancomycin, Gentamicin | Susceptibility to ceftriaxone, levofloxacin, and vancomycin. Penicillin, rifampin, and clindamycin resistant. | Recovery | Khatri, A. et al. | 2021 [40] | United States |
37 | Postoperative bariatric surgery type sleeve, presented thoracoabdominal fistula, treated with BSA evolves to acute diarrhea. | Vancomycin | ND | Discharge | Schierling, N. et al. | 2022 [53] | Brazil |
4. Materials and Methods
4.1. Setting and Study Design
4.2. Data Collection and Outcome Measures
4.3. Bacterial Isolates
4.4. Statistical Analysis
4.5. Bioinformatic Analysis
4.6. Ethics Approval and Consent to Participate
4.7. Declaration of Generative AI and AI-Assisted Technologies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joint FAO WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food (Ed.) Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO Food and Nutrition Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; 50p. [Google Scholar]
- Acosta-Rodríguez-Bueno, C.P.; Abreu, Y.; Abreu, A.T.; Guarner, F.; Guno, M.J.V.; Pehlivanoğlu, E.; Perez, M. Bacillus clausii for Gastrointestinal Disorders: A Narrative Literature Review. Adv. Ther. 2022, 39, 4854–4874. [Google Scholar] [CrossRef]
- Saarela, M.; Matto, J.; Mattila-Sandholm, T. Safety Aspects of Lactobacillus and Bifidobacterium Species Originating from Human Oro-gastrointestinal Tract or from Probiotic Products. Microb. Ecol. Health Dis. 2002, 14, 234–241. [Google Scholar] [CrossRef]
- Enterogermina. Sanofi. Available online: https://www.enterogermina.com.do/-/media/ems/conditions/consumer%20healthcare/brands/enterogermina-cac/prodotto_hp/enterogermina.pdf (accessed on 13 September 2023).
- Lee, N.-K.; Kim, W.-S.; Paik, H.-D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front. Immunol. 2020, 11, 2192. [Google Scholar] [CrossRef]
- Vitetta, L.; Briskey, D.; Alford, H.; Hall, S.; Coulson, S. Probiotics, prebiotics and the gastrointestinal tract in health and disease. Inflammopharmacol 2014, 22, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhao, C.; Du, Y.; Zhang, Y.; Zhao, M.; Zhao, Q. Comparative efficacy and tolerability of probiotics for antibiotic-associated diarrhea: Systematic review with network meta-analysis. UEG J. 2018, 6, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Guevarra, R.B.; Kim, Y.-T.; Kwon, J.; Kim, H.; Cho, J.H.; Kim, H.B.; Lee, J.-H. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J. Microbiol. Biotechnol. 2019, 29, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Brüssow, H. Probiotics and prebiotics in clinical tests: An update. F1000Research 2019, 8, 1157. [Google Scholar] [CrossRef] [PubMed]
- Lopetuso, L.R.; Scaldaferri, F.; Franceschi, F.; Gasbarrini, A. Bacillus clausii and gut homeostasis: State of the art and future perspectives. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 943–948. [Google Scholar] [CrossRef]
- Olveira, G.; González-Molero, I. Actualización de probióticos, prebióticos y simbióticos en nutrición clínica. Endocrinol. Nutr. 2016, 63, 482–494. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, J.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clin. Nutr. 2020, 39, 2960–2969. [Google Scholar] [CrossRef] [PubMed]
- Dimidi, E.; Christodoulides, S.; Fragkos, K.C.; Scott, S.M.; Whelan, K. The effect of probiotics on functional constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E. Probiotic supplementation decreases intestinal transit time: Meta-analysis of randomized controlled trials. WJG 2013, 19, 4718. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Umu, Ö.C.O.; Rudi, K.; Diep, D.B. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb. Ecol. Health Dis. 2017, 28, 1348886. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Gueimonde, M.; Salminen, S. Probiotics in Adhesion of Pathogens. In Bioactive Foods in Promoting Health; Elsevier: Amsterdam, The Netherlands, 2010; pp. 353–70. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123749383000232 (accessed on 20 November 2023).
- Plaza-Díaz, J.; Ruiz-Ojeda, F.; Gil-Campos, M.; Gil, A. Immune-Mediated Mechanisms of Action of Probiotics and Synbiotics in Treating Pediatric Intestinal Diseases. Nutrients 2018, 10, 42. [Google Scholar] [CrossRef]
- D’Amelio, P.; Sassi, F. Gut Microbiota, Immune System, and Bone. Calcif. Tissue Int. 2018, 102, 415–425. [Google Scholar] [CrossRef]
- Gómez-Llorente, C.; Muñoz, S.; Gil, A. Role of Toll-like receptors in the development of immunotolerance mediated by probiotics. Proc. Nutr. Soc. 2010, 69, 381–389. [Google Scholar] [CrossRef]
- Lee, N.-K.; Son, S.-H.; Jeon, E.B.; Jung, G.H.; Lee, J.-Y.; Paik, H.-D. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J. Funct. Foods 2015, 14, 513–518. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Satish Kumar, R.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Probiotics and Its Functionally Valuable Products—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef]
- Cenci, G.; Trotta, F.; Caldini, G. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J. Appl. Microbiol. 2006, 101, 1208–1215. [Google Scholar] [CrossRef]
- Fuente, M.D.l. La microbiota. Su función en la fisiología humana. In Fisiología Humana, 5th ed.; Fernández-Tresguerres, J.A., Cachofeiro, V., Cardinali, D.P., Delpón, E., Díaz-Rubio, E.R., Escriche, E.E., Juliá, V.L., Teruel, F.M., Pardo, M.R., Eds.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Nakano, M.M.; Corbell, N.; Besson, J.; Zuber, P. Isolation and characterization of sfp: A gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet. 1992, 232, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hoa, T.T.; Duc, L.H.; Isticato, R.; Baccigalupi, L.; Ricca, E.; Van, P.H.; Cutting, S.M. Fate and Dissemination of Bacillus subtilis Spores in a Murine Model. Appl. Environ. Microbiol. 2001, 67, 3819–3823. [Google Scholar] [CrossRef] [PubMed]
- Duc, L. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 2003, 21, 4215–4224. [Google Scholar] [CrossRef]
- Patel, S.; Gupta, R.S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar] [CrossRef]
- Sudha, M.R.; Bhonagiri, S.; Kumar, M.A. Efficacy of Bacillus clausii strain UBBC-07 in the treatment of patients suffering from acute diarrhoea. Benef. Microbes 2013, 4, 211–216. [Google Scholar] [CrossRef]
- VigiAccess. Available online: https://www.vigiaccess.org/ (accessed on 13 September 2023).
- Bozdogan, B.; Galopin, S.; Leclercq, R. Characterization of a New erm-Related Macrolide Resistance Gene Present in Probiotic Strains of Bacillus clausii. Appl. Environ. Microbiol. 2004, 70, 280–284. [Google Scholar] [CrossRef]
- Nakamura, K.; Oshima, T.; Morimoto, T.; Ikeda, S.; Yoshikawa, H.; Shiwa, Y.; Ishikawa, S.; Linak, M.C.; Hirai, A.; Takahashi, H.; et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 2011, 39, e90. [Google Scholar] [CrossRef]
- Gargar, J.D.; Divinagracia, R.M. When good things go bad: A case series of bacteremia from probiotics. Chest 2019, 155, 92A. [Google Scholar] [CrossRef]
- Princess, I.; Natarajan, T.; Ghosh, S. When good bacteria behave badly: A case report of Bacillus clausii sepsis in an immuno-competant adult. Access Microbiol. 2020, 2, e000097. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Oses, P.; Galizia Brito, V.; Sucari, A.; Peninni, M.; Gentiluomo, J.; Merkt, M.; Castillo, S.; Zanella, M.; Place, P.; Ramirez, S.; et al. Bacteremia por Bacillus clausii Asociada a la Administración de Probióticos. In Proceedings of the XVII Congreso Sociedad Argentina de Infectología (SADI), Mar del Plata, Argentina, 15–17 June 2017. [Google Scholar]
- Khatri, A.M.; Rai, S.; Shank, C.; McInerney, A.; Kaplan, B.; Hagmann, S.H.F.; Kainth, M.K. A tale of caution: Prolonged Bacillus clausii bacteraemia after probiotic use in an immunocompetent child. Access Microbiol. 2021, 3, 000205. Available online: https://www.microbiologyresearch.org/content/journal/acmi/10.1099/acmi.0.000205 (accessed on 14 September 2023). [CrossRef]
- Joshi, S.; Udani, S.; Sen, S.; Kirolikar, S.; Shetty, A. Bacillus clausii Septicemia in a Pediatric Patient After Treatment with Pro-biotics. Pediatr. Infect. Dis. J. 2019, 38, e228–e230. [Google Scholar] [CrossRef]
- Farina, C.; Arosio, M.; Mangia, M.; Moioli, F. Lactobacillus casei subsp. rhamnosus Sepsis in a Patient With Ulcerative Colitis. J. Clin. Gastroenterol. 2001, 33, 251. [Google Scholar]
- Husni, R.N.; Gordon, S.M.; Washington, J.A.; Longworth, D.L. Lactobacillus Bacteremia and Endocarditis: Review of 45 Cases. Clin. Infect. Dis. 1997, 25, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.N.; Noel, J.M.; Fairchok, M.P. Two Cases of Lactobacillus Bacteremia During Probiotic Treatment of Short Gut Syn-drome. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 457. [Google Scholar] [CrossRef] [PubMed]
- Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Järvinen, A. Lactobacillus Bacteremia, Clinical Significance, and Patient Outcome, with Special Focus on Probiotic L. rhamnosus GG. Clin. Infect. Dis. 2004, 38, 62–69. [Google Scholar] [CrossRef]
- Salminen, M.K.; Tynkkynen, S.; Rautelin, H.; Saxelin, M.; Vaara, M.; Ruutu, P.; Sarna, S.; Valtonen, V.; Järvinen, A. Lactobacillus Bacteremia during a Rapid Increase in Probiotic Use of Lactobacillus rhamnosus GG in Finland. Clin. Infect. Dis. 2002, 35, 1155–1160. [Google Scholar] [CrossRef]
- Oggioni, M.R.; Pozzi, G.; Valensin, P.E.; Galieni, P.; Bigazzi, C. Recurrent Septicemia in an Immunocompromised Patient Due to Probiotic Strains of Bacillus subtilis. J. Clin. Microbiol. 1998, 36, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Richard, V.; Auwera, P.; Snoeck, R.; Daneau, D.; Meunier, F. Nosocomial bacteremia caused by Bacillus species. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, A.; Takahashi, S.; Ito, Y.; Ohishi, Y.; Tsukamoto, K.; Nanba, Y.; Ito, N.; Kakiuchi, S.; Saitoh, A.; Morotomi, M.; et al. Bifidobacterium Septicemia Associated with Postoperative Probiotic Therapy in a Neonate with Omphalocele. J. Pediatr. 2010, 156, 679–681. [Google Scholar] [CrossRef] [PubMed]
- García, J.P.; Alzate, J.A.; Hoyos, J.A.; Cristancho, E. Bacteremia after Bacillus clausii administration for the treatment of acute diarrhea: A case report. Biomedica 2021, 41 (Suppl. 2), 13–20. [Google Scholar] [CrossRef] [PubMed]
- Luna, V.A.; King, D.S.; Gulledge, J.; Cannons, A.C.; Amuso, P.T.; Cattani, J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre(R) automated microbroth dilution and Etest(R) agar gradient diffusion methods. J. Antimicrob. Chemother. 2007, 60, 555–567. [Google Scholar] [CrossRef]
- Veysseyre, F.; Fourcade, C.; Lavigne, J.-P.; Sotto, A. Bacillus cereus infection: 57 case patients and a literature review. Méd. Mal. Infect. 2015, 45, 436–440. [Google Scholar] [CrossRef]
- Schierling, N.L.B.; Silva, A.H.C.d.S.; Pinto, M.R.; Campos, C.M.; Hauki, M.C.; Figueiredo, A.L.; Pedroso, F.P. Bacteremia por Bacillus clausii em paciente imunocompetente: Um relato de caso. Braz. J. Infect. Dis. 2022, 26, 207. [Google Scholar] [CrossRef]
- Nacinovich, F.; Fernández, O.; Sucari, A. Probiotics in the Critically Ill: Friends or Foes? Persistent Bacteriemia Due to Bacillus clausii. In Proceedings of the 29th European Congress of Clinical Microbiology & Infectious Diseases, Amsterdam, The Netherlands, 13–16 April 2019. [Google Scholar]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.H.; Sibbald, W.J. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef]
- Senneby, E.; Petersson, A.C.; Rasmussen, M. Clinical and microbiological features of bacteraemia with Aerococcus urinae. Clin. Microbiol. Infect. 2012, 18, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Mellhammar, L.; Linder, A.; Tverring, J.; Christensson, B.; Boyd, J.H.; Sendi, P.; Åkesson, P.; Kahn, F. NEWS2 is Superior to qSOFA in Detecting Sepsis with Organ Dysfunction in the Emergency Department. J. Clin. Med. 2019, 8, 1128. [Google Scholar] [CrossRef]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol. 2019, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Deatherage, D.E.; Barrick, J.E. Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using breseq. In Engineering and Analyzing Multicellular Systems; Sun, L., Shou, W., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; Volume 1151, pp. 165–188. ISBN 978-1-4939-0553-9. Available online: https://link.springer.com/10.1007/978-1-4939-0554-6_12 (accessed on 16 November 2023).
- Seemann, T. Snippy. 2023. Available online: https://github.com/tseemann/snippy (accessed on 16 November 2023).
Case | Age/Gender | Comorbidities | Patient Profiles | Admission |
---|---|---|---|---|
HCB-AC1 | 73/M | HTA, DLP, DM | Bacterial pneumonia and SARS-CoV-2 | COVID-19 |
HCB-AC2 | 39/F | Asthma | Cardiogenic shock, septic shock, and intrahepatic cholangiocarcinoma | Left intrahepatic cholangiocarcinoma |
HCB-AC3 | 93/M | Basal cell carcinoma, sternal metastasis, HTA, SVT | Bacterial pneumonia, mechanical ventilation | Thoracoabdominal dissociation and pleural effusion |
HCB-AC4 | 78/F | HTA, DLP, DM, CVD | Aspiration pneumonia | Pacemaker placement |
Case | A. clausii Administration | Time to the Onset of Bacteremia (Days) | ||
---|---|---|---|---|
Disruptions in Bacterial Microbiota | Dosage (Billion IU) | Duration (Days) | ||
HCB-AC1 | Diarrhea | 4 every 12 h | 7 | 6 |
HCB-AC2 | Diarrhea, vomiting, and nausea | 2 every 8 h | 4 | 4 |
HCB-AC3 | Diarrhea | 4 every 24 h | 9 | 8 |
HCB-AC4 | Nausea | 4 every 12 h | 15 | 20 |
Case | SIRS Criteria | Organic Dysfunction | Evolution | Antibiotic Treatment | Other Culture Findings | In-Hospital Fatality and Other Remarks |
---|---|---|---|---|---|---|
HCB-AC1 | 4/4 | Resp | Pulmonary necrosis, ICU, MV, neurological disorders, upper gastrointestinal bleeding, septic shock. | Cefotaxime, Levofloxacin | Blood culture: Pseudomonas aeruginosa, Staphylococos epidermidis. | Died |
HCB-AC2 | 3/4 | HT | Peritonitis, cardiac arrhythmias, bacteremia, hemodynamic instability. | Vancomycin | Peritoneal fluid: Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Ochrobactrum anthropic. | Died |
HCB-AC3 | 3/4 | - | Hemodynamic instability, acute renal failure, pneumonia due to superinfection. | Ceftazidime- Avibactam + Vancomycin | Bronchial secretion: Burkholderia cepacian group. | Transfer to another hospital |
HCB-AC4 | 3/4 | Ren | Hemodynamic instability, cardiac arrhythmias, pneumonia due to superinfection, neurological disorders. | Ampicillin+ Levofloxacin + TMP-SMX | Bronchial secretion: Stenotrophomonas maltophilia, Escherichia coli, C. albicans. | Died |
Position | Mutation | Annotation | Gene | Description |
---|---|---|---|---|
246,999 | +G | coding (1215/1416 nt) | DB29_00287 ← | Membrane protein, putative |
505,267 | (C)5→6 | coding (137/204 nt) | DB29_00564 ← | hypothetical protein |
670,059 | (C)8→9 | intergenic (+16/+23) | DB29_00722 →/← DB29_00723 | Putative glycoside hydrolase/Stage V sporulation protein B |
912.77 | (C)6→7 | coding (406/459 nt) | DB29_00956 ← | Phosphoribosylformylglycinamidine cyclo-ligase |
1,607,340 | (C)6→7 | intergenic (−783/+1) | DB29_01660 ←/← DB29_01661 | putative rhamnogalacturonan lyase in rhamnose utilization cluster/hypothetical protein |
1,738,248 | +G | coding (269/330 nt) | DB29_01784 → | Integral membrane protein |
1,767,258 | +C | coding (754/2934 nt) | DB29_01815 ← | hypothetical protein |
1,810,315 | +C | coding (338/483 nt) | DB29_01851 ← | KinB signaling pathway activation protein |
2,359,157 | (G)5→6 | coding (557/609 nt) | DB29_02403 → | Transposase |
2,826,475 | +C | coding (574/618 nt) | DB29_02867 ← | TetR family transcriptional regulator |
3,061,533 | +G | intergenic (+94/+14) | DB29_03110 →/← DB29_03111 | Teichuronic acid biosynthesis glycosyl transferase TuaC/hypothetical protein |
3,265,972 | +C | intergenic (−12/+157) | DB29_03326 ←/← DB29_03327 | Isocitrate lyase/hypothetical protein |
3,481,536 | (G)5→6 | coding (743/828 nt) | DB29_03557 → | Hypothetical protein |
3,528,009 | +C | intergenic (−11/+264) | DB29_03604 ←/← DB29_03605 | Cytochrome c-type biogenesis protein DsbD, protein-disulfide reductase/hypothetical protein |
3,552,355 | +G | coding (745/750 nt) | DB29_03624 → | Uroporphyrinogen-III synthase |
3,648,617 | (G)6→7 | coding (392/408 nt) | DB29_03715 ← | Hypothetical protein |
3,888,513 | +G | coding (3166/3186 nt) | DB29_03977 → | Chromosome partition protein smc |
3,998,002 | (G)6→7 | coding (380/468 nt) | DB29_04092 → | DNA mismatch repair protein MutL |
4,192,551 | (C)5→6 | coding (2671/2835 nt) | DB29_04308 ← | Multimodular transpeptidase-transglycosylase |
4,259,750 | (A)7→6 | coding (532/540 nt) | DB29_04378 ← | Flagellar motor rotation protein MotB |
4,263,161 | +G | intergenic (−198/−156) | DB29_04381 ←/→ DB29_04382 | Hypothetical protein/hypothetical protein |
4,264,808 | Δ1 bp | intergenic (+35/−) | DB29_04384 →/– | Chloramphenicol acetyltransferase/– |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Madriz, J.P.; Zavaleta-Monestel, E.; Rojas-Chinchilla, C.; Arguedas-Chacón, S.; Serrano-Arias, B.; Ferreto-Meza, M.A.; Romero-Chavarría, B.M.; Zumbado-Amerling, P.; Vásquez-Mendoza, A.F.; Gutiérrez-González, K.S.; et al. Bacteremia Following Alkalihalobacillus clausii (Formerly Bacillus clausii) Administration in Immunosuppressed Adults: A Case Series. Bacteria 2023, 2, 185-195. https://doi.org/10.3390/bacteria2040014
Díaz-Madriz JP, Zavaleta-Monestel E, Rojas-Chinchilla C, Arguedas-Chacón S, Serrano-Arias B, Ferreto-Meza MA, Romero-Chavarría BM, Zumbado-Amerling P, Vásquez-Mendoza AF, Gutiérrez-González KS, et al. Bacteremia Following Alkalihalobacillus clausii (Formerly Bacillus clausii) Administration in Immunosuppressed Adults: A Case Series. Bacteria. 2023; 2(4):185-195. https://doi.org/10.3390/bacteria2040014
Chicago/Turabian StyleDíaz-Madriz, José Pablo, Esteban Zavaleta-Monestel, Carolina Rojas-Chinchilla, Sebastián Arguedas-Chacón, Bruno Serrano-Arias, Mery Alejandra Ferreto-Meza, Betzy María Romero-Chavarría, Priscila Zumbado-Amerling, Ana Fernanda Vásquez-Mendoza, Karla Sofia Gutiérrez-González, and et al. 2023. "Bacteremia Following Alkalihalobacillus clausii (Formerly Bacillus clausii) Administration in Immunosuppressed Adults: A Case Series" Bacteria 2, no. 4: 185-195. https://doi.org/10.3390/bacteria2040014
APA StyleDíaz-Madriz, J. P., Zavaleta-Monestel, E., Rojas-Chinchilla, C., Arguedas-Chacón, S., Serrano-Arias, B., Ferreto-Meza, M. A., Romero-Chavarría, B. M., Zumbado-Amerling, P., Vásquez-Mendoza, A. F., Gutiérrez-González, K. S., & Rodríguez, C. (2023). Bacteremia Following Alkalihalobacillus clausii (Formerly Bacillus clausii) Administration in Immunosuppressed Adults: A Case Series. Bacteria, 2(4), 185-195. https://doi.org/10.3390/bacteria2040014