The Cell of Origin Defines the Transcriptional Program of APC-Transformed Organoids
Abstract
1. Introduction
2. Materials and Methods
2.1. Single-Cell RNAseq Analysis of Mouse Small Intestine Epithelial Cells
2.2. Organoid Cultures
2.3. Organoid Recombination
2.4. FACS Preparation and Staining of Mouse Organoids
2.5. Flow Cytometry and Gating Strategies
2.6. Genotyping and PCR Recombination Validation of Apcfl/fl
2.7. Platting of the Organoid Cultures
2.8. Clonogenicity of Mouse Organoids
2.9. RNA Isolation
2.10. qRT-PCR
2.11. Data Processing
2.12. Immunofluorescence
2.13. Statistical Analysis
3. Results
3.1. Single-Cell Analysis of Small Mouse Intestinal Cells Showed Enrichment of c-KIT, CD44, and CD24 mRNA in Distinct Cell Clusters
3.2. Validation of RNA-Seq Data with Protein Expression Analysis
3.3. Recombination Validation of APC in Organoid Model and c-KIT, CD44, and CD24 Positive Cells in Small-Intestinal Mouse Organoids
3.4. c-KIThigh-, CD44high-, and CD24 SSChigh-Derived Apc-/- Organoid Models
3.5. RNAseq and Gene Expression Patterns
3.6. Cell Enrichment in c-KIThigh-Derived Organoids
4. Discussion
4.1. Translational Outlook
4.2. Clinical Relevance and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRC | Colorectal cancer |
ISC | Intestinal stem cells |
APC | Adenomatous polyposis coli |
IBD | Inflammatory bowel disease |
GFP | Green fluorescence protein |
References
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Shibata, H.; Toyama, K.; Shioya, H.; Ito, M.; Hirota, M.; Hasegawa, S.; Matsumoto, H.; Takano, H.; Akiyama, T.; Toyoshima, K.; et al. Rapid Colorectal Adenoma Formation Initiated by Conditional Targeting of the Apc Gene. Science 1997, 278, 120–123. [Google Scholar] [CrossRef]
- Visvader, J.E. Cells of origin in cancer. Nature 2011, 469, 314–322. [Google Scholar] [CrossRef]
- Huels, D.J.; Sansom, O.J. Stem vs non-stem cell origin of colorectal cancer. Br. J. Cancer 2015, 113, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Rycaj, K.; Tang, D.G. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Res. 2015, 75, 4003–4011. [Google Scholar] [CrossRef] [PubMed]
- Bamodu, O.A.; Chung, C.-C.; Pisanic, T.R.; Wu, A.T.H. The intricate interplay between cancer stem cells and cell-of-origin of cancer: Implications for therapeutic strategies. Front. Oncol. 2024, 14, 1404628. [Google Scholar] [CrossRef]
- Bormann, F.; Rodríguez-Paredes, M.; Lasitschka, F.; Edelmann, D.; Musch, T.; Benner, A.; Bergman, Y.; Dieter, S.M.; Ball, C.R.; Glimm, H.; et al. Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis. Cell Rep. 2018, 23, 3407–3418. [Google Scholar] [CrossRef] [PubMed]
- Rajamäki, K.; Taira, A.; Katainen, R.; Välimäki, N.; Kuosmanen, A.; Plaketti, R.-M.; Seppälä, T.T.; Ahtiainen, M.; Wirta, E.-V.; Vartiainen, E.; et al. Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease–Associated Colorectal Cancer. Gastroenterology 2021, 161, 592–607. [Google Scholar] [CrossRef]
- van der Flier, L.G.; Clevers, H. Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium. Annu. Rev. Physiol. 2009, 71, 241–260. [Google Scholar] [CrossRef]
- Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature 2005, 434, 843–850. [Google Scholar] [CrossRef]
- van Neerven, S.M.; de Groot, N.E.; Nijman, L.E.; Scicluna, B.P.; van Driel, M.S.; Lecca, M.C.; Warmerdam, D.O.; Kakkar, V.; Moreno, L.F.; Braga, F.A.V.; et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 2021, 594, 436–441. [Google Scholar] [CrossRef]
- Dow, L.E.; O’rOurke, K.P.; Simon, J.; Tschaharganeh, D.F.; van Es, J.H.; Clevers, H.; Lowe, S.W. Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer. Cell 2015, 161, 1539–1552. [Google Scholar] [CrossRef]
- Barker, N.; Van Es, J.H.; Kuipers, J.; Kujala, P.; Van Den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, C.B.; Asfaha, S.; Hayakawa, Y.; Takemoto, Y.; Lukin, D.J.; Nuber, A.H.; Brandtner, A.; Setlik, W.; Remotti, H.; Muley, A.; et al. Long-lived intestinal tuft cells serve as colon cancer–initiating cells. J. Clin. Investig. 2014, 124, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, D.; Hashizume, O.; Taniguchi, S.; Funato, Y.; Miki, H. Role of adenomatous polyposis coli in proliferation and differentiation of colon epithelial cells in organoid culture. Sci. Rep. 2021, 11, 3980. [Google Scholar] [CrossRef] [PubMed]
- Alison, M.R. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int. J. Exp. Pathol. 2020, 101, 132–151. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, S.; Fingerle, A.A.; Cammareri, P.; Nebelsiek, T.; Göktuna, S.I.; Ziegler, P.K.; Canli, O.; Heijmans, J.; Huels, D.J.; Moreaux, G.; et al. Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell 2013, 152, 25–38. [Google Scholar] [CrossRef]
- Ramesh, P.; Lannagan, T.R.M.; Jackstadt, R.; Taboada, L.A.; Lansu, N.; Wirapati, P.; van Hooff, S.R.; Dekker, D.; Pritchard, J.; Kirov, A.B.; et al. BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer. Cell Death Differ. 2021, 28, 3282–3296. [Google Scholar] [CrossRef]
- Van Der Heijden, M.; Zimberlin, C.D.; Nicholson, A.M.; Colak, S.; Kemp, R.; Meijer, S.L.; Medema, J.P.; Greten, F.R.; Jansen, M.; Winton, D.J.; et al. Bcl-2 is a critical mediator of intestinal transformation. Nat. Commun. 2016, 7, 10916. [Google Scholar] [CrossRef]
- Schmitt, M.; Schewe, M.; Sacchetti, A.; Feijtel, D.; van de Geer, W.S.; Teeuwssen, M.; Sleddens, H.F.; Joosten, R.; van Royen, M.E.; van de Werken, H.J.; et al. Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. Cell Rep. 2018, 24, 2312–2328.e7. [Google Scholar] [CrossRef]
- Verhagen, M.P.; Joosten, R.; Schmitt, M.; Välimäki, N.; Sacchetti, A.; Rajamäki, K.; Choi, J.; Procopio, P.; Silva, S.; van der Steen, B.; et al. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat. Genet. 2024, 56, 1456–1467. [Google Scholar] [CrossRef]
- Haber, A.L.; Biton, M.; Rogel, N.; Herbst, R.H.; Shekhar, K.; Smillie, C.; Burgin, G.; Delorey, T.M.; Howitt, M.R.; Katz, Y.; et al. A single-cell survey of the small intestinal epithelium. Nature 2017, 551, 333–339. [Google Scholar] [CrossRef]
- R2: Genomics Analysis and Visualization Platform. Available online: http://r2.amc.nl (accessed on 21 September 2025).
- Muzumdar, M.D.; Tasic, B.; Miyamichi, K.; Li, L.; Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 2007, 45, 593–605. [Google Scholar] [CrossRef]
- Ramesh, P.; Kirov, A.B.; Huels, D.J.; Medema, J.P. Isolation, Propagation, and Clonogenicity of Intestinal Stem Cells. Methods Mol. Biol. 2019, 2002, 61–73. [Google Scholar] [CrossRef]
- Sato, T.; Van Es, J.H.; Snippert, H.J.; Stange, D.E.; Vries, R.G.; van den Born, M.; Barker, N.; Shroyer, N.F.; Van De Wetering, M.; Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011, 469, 415–418. [Google Scholar] [CrossRef]
- Rothenberg, M.E.; Nusse, Y.; Kalisky, T.; Lee, J.J.; Dalerba, P.; Scheeren, F.; Lobo, N.; Kulkarni, S.; Sim, S.; Qian, D.; et al. Identification of a cKit+ Colonic Crypt Base Secretory Cell That Supports Lgr5+ Stem Cells in Mice. Gastroenterology 2012, 142, 1195–1205.e6. [Google Scholar] [CrossRef]
- Torang, A.; Kirov, A.B.; Lammers, V.; Cameron, K.; Wouters, V.M.; Jackstadt, R.F.; Lannagan, T.R.M.; de Jong, J.H.; Koster, J.; Sansom, O.; et al. Enterocyte-like differentiation defines metabolic gene signatures of CMS3 colorectal cancers and provides therapeutic vulnerability. Nat. Commun. 2025, 16, 264. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, B. PreprocessCore: A Collection of Pre-Processing Functions. R Package Version 1.58.0. Available online: https://github.com/bmbolstad/preprocessCore (accessed on 21 September 2025).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org (accessed on 21 September 2025).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Wielenga, V.J.; Smits, R.; Korinek, V.; Smit, L.; Kielman, M.; Fodde, R.; Clevers, H.; Pals, S.T. Expression of CD44 in Apc and TcfMutant Mice Implies Regulation by the WNT Pathway. Am. J. Pathol. 1999, 154, 515–523. [Google Scholar] [CrossRef]
- Mei, X.; Gu, M.; Li, M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res. Ther. 2020, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Wallaeys, C.; Garcia-Gonzalez, N.; Libert, C. Paneth cells as the cornerstones of intestinal and organismal health: A primer. EMBO Mol. Med. 2022, 15, e16427. [Google Scholar] [CrossRef]
- Tomizawa, F.; Jang, M.-K.; Mashima, T.; Seimiya, H. c-KIT regulates stability of cancer stemness in CD44-positive colorectal cancer cells. Biochem. Biophys. Res. Commun. 2020, 527, 1014–1020. [Google Scholar] [CrossRef]
- Fodde, R.; Verhagen, M.; Joosten, R.; Schmitt, M.; Sacchetti, A.; Choi, J.; Välimäki, N.; Aaltonen, L.A.; Augenlicht, L.H.; Fodde, R. Paneth cells as the origin of intestinal cancer in the context of inflammation. PREPRINT (Version 1) available at Research Square. Biol. Sci. 2023. [Google Scholar] [CrossRef]
- Ran, R.; Briones, J.M.; Jena, S.; Anderson, N.L.; Olson, M.R.; Green, L.N.; Brubaker, D.K. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024, 27, 109383. [Google Scholar] [CrossRef]
- Chen, B.; Scurrah, C.R.; McKinley, E.T.; Simmons, A.J.; Ramirez-Solano, M.A.; Zhu, X.; Markham, N.O.; Heiser, C.N.; Vega, P.N.; Rolong, A.; et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell 2021, 184, 6262–6280.e26. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Chen, X.; Sheng, Q.; Yang, J.; Zhu, Y.; Wang, Y.; Yan, F.; Fang, J. Single-Cell Transcriptomics Reveals Cellular Heterogeneity and Drivers in Serrated Pathway-Driven Colorectal Cancer Progression. Int. J. Mol. Sci. 2024, 25, 10944. [Google Scholar] [CrossRef] [PubMed]
- Newmark, H.L.; Yang, K.; Kurihara, N.; Fan, K.; Augenlicht, L.H.; Lipkin, M. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: A preclinical model for human sporadic colon cancer. Carcinog. 2008, 30, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Sia, D.; Villanueva, A.; Friedman, S.L.; Llovet, J.M. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017, 152, 745–761. [Google Scholar] [CrossRef]
- Khelil, M.; Griffin, H.; Bleeker, M.C.; Steenbergen, R.D.; Zheng, K.; Saunders-Wood, T.; Samuels, S.; Rotman, J.; Vos, W.; Akker, B.E.v.D.; et al. Delta-Like Ligand–Notch1 Signaling Is Selectively Modulated by HPV16 E6 to Promote Squamous Cell Proliferation and Correlates with Cervical Cancer Prognosis. Cancer Res. 2021, 81, 1909–1921. [Google Scholar] [CrossRef]
- Juul, N.H.; Yoon, J.-K.; Martinez, M.C.; Rishi, N.; Kazadaeva, Y.I.; Morri, M.; Neff, N.F.; Trope, W.L.; Shrager, J.B.; Sinha, R.; et al. KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming. Nature 2023, 619, 860–867. [Google Scholar] [CrossRef] [PubMed]
Target | Forward Primer | Reverse Primer |
---|---|---|
Rplp0 | TGCACTCTCGCTTTCTGGAGGGTG | AATGCAGATGGATCAGCCAGGAAGG |
Lgr5 | TTCGTAGGCAACCCTTCTCT | TCCTGTCAAGTGAGGAAATTCA |
ASCL2 | GGAAGCACACCTTGACTGGT | GAAGTGGACGTTTGCACCTT |
Alpi | GGCTACACACTTAGGGGGACCTCCA | AGCTTCGGTGACATTGGGCCGGTT |
Muc2 | CCTGAAGACTGTCGTGCTGT | GGGTAGGGTCACCTCCATCT |
Lyz1 | GAGACCGAAGCACCGACTATG | CGGTTTTGACATTGTGTTCGC |
Chga | AAGAAGAGGAGGAGGAAGAGG | TCCATCCACTGCCTGAGAG |
Fcgbp | CCACTGTGTGATGCATTGGC | GGTCAGTGGGCAAAGTTCCT |
Dclk1 | TCAATGAGGACCAGCTCCAG | TCCGAGAGAGTTCGGGTCA |
Ephb2 | CCATTGAACAGGACTACAGACTACC | CACCGTGTTAAAGCTGGTGTAG |
Olfm4 | GCCACTTTCCAATTTCAC | GAGCCTCTTCTCATACAC |
Reg4 | TGCTGAGCTGGAGTGTCAGT | TCATGCAGGCCAATCCACAC |
Spink4 | TGCCTGACCCGGATGAAAAC | ATGGCTTGAGTGCACCTCTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirov, A.B.; Lammers, V.; Torang, A.; Koster, J.; Medema, J.P. The Cell of Origin Defines the Transcriptional Program of APC-Transformed Organoids. Organoids 2025, 4, 22. https://doi.org/10.3390/organoids4040022
Kirov AB, Lammers V, Torang A, Koster J, Medema JP. The Cell of Origin Defines the Transcriptional Program of APC-Transformed Organoids. Organoids. 2025; 4(4):22. https://doi.org/10.3390/organoids4040022
Chicago/Turabian StyleKirov, Aleksandar B., Veerle Lammers, Arezo Torang, Jan Koster, and Jan Paul Medema. 2025. "The Cell of Origin Defines the Transcriptional Program of APC-Transformed Organoids" Organoids 4, no. 4: 22. https://doi.org/10.3390/organoids4040022
APA StyleKirov, A. B., Lammers, V., Torang, A., Koster, J., & Medema, J. P. (2025). The Cell of Origin Defines the Transcriptional Program of APC-Transformed Organoids. Organoids, 4(4), 22. https://doi.org/10.3390/organoids4040022