Broiler Chicken Response to Xylanase and Rice Bran Supplementation in Wheat- and Maize-Based Diets
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Growth Performance Broiler Trial
2.3. Metabolizable Energy Broiler Trial
2.4. Laboratory Analysis and Calculations
2.5. Statistical Analysis and Factorial Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RB | Rice bran |
XYL | Xylanase |
AMEn | Nitrogen-corrected apparent metabolizable energy |
BD | Basal diet |
ND | Nitrogen digestibility |
SD | Starch digestibility |
FCR | Feed conversion ratio |
ECR | Energy conversion ratio |
DF | Dietary fiber |
NSP | Non-starch polysaccharide |
DDGSs | Distillers dried grains with solubles |
SCFA | Short-chain fatty acid |
VFA | Volatile fatty acid |
FI | Feed intake |
WG | Weight gain |
AX | Arabinoxylan |
AXOS | Arabino-xylooligosaccharide |
XOS | Xylooligosaccharide |
TiO2 | Titanium dioxide |
DM | Dry matter |
DMR | Dry matter retention |
NDF | Neutral detergent fiber |
SEM | Standard error of means |
References
- Wongtangtintharn, S.; Chakkhambang, S.; Pootthachaya, P.; Cherdthong, A.; Wanapat, M. Challenges and constraints to the sustainability of poultry farming in Thailand. Anim. Biosci. 2025, 38, 845. [Google Scholar] [CrossRef]
- Alqaisi, O.; Ndambi, O.A.; Williams, R.B. Time series livestock diet optimization: Cost-effective broiler feed substitution using the commodity price spread approach. Agric. Food Econ. 2017, 5, 25. [Google Scholar] [CrossRef]
- Dei, H. Assessment of maize (Zea mays) as feed resource for poultry. In Poultry Science; IntechOpen: London, UK, 2017; pp. 1–39. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- AHDB. GB Animal Feed Production. 2023. Available online: https://ahdb.org.uk/cereals-oilseeds/cereal-use-in-gb-animalfeed-production (accessed on 20 May 2025).
- Attia, Y.A.; Ashour, E.A.; Nagadi, S.A.; Farag, M.R.; Bovera, F.; Alagawany, M. Rice bran as an alternative feedstuff in broiler nutrition and impact of Liposorb® and vitamin E-Se on sustainability of performance, carcass traits, blood biochemistry, and antioxidant indices. Vet. Sci. 2023, 10, 299. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Xing, T.; Zhao, L.; Gao, F. Effects of corn complete replacement by broken rice, wheat, and rice bran and enzyme preparation supplementation on growth performance, meat quality, digestive function, and glucose metabolism of Langshan chickens. J. Sci. Food Agric. 2025, 105, 6126–6137. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.A.; Lærke, H.N.; Knudsen, K.E.B.; Stein, H.H. Arabinoxylan is the main polysaccharide in fiber from rice coproducts, and increased concentration of fiber decreases in vitro digestibility of dry matter. Anim. Feed Sci. Technol. 2019, 247, 255–261. [Google Scholar] [CrossRef]
- Nguyen, X.H.; Nguyen, H.T.; Morgan, N.K. Dietary soluble non-starch polysaccharide level and xylanase supplementation influence performance, egg quality and nutrient utilization in laying hens fed wheat-based diets. Anim. Nutr. 2021, 7, 512–520. [Google Scholar] [CrossRef]
- Uerlings, J.; Schroyen, M.; Bautil, A.; Courtin, C.; Richel, A.; Sureda, E.A.; Bruggeman, G.; Tanghe, S.; Willems, E.; Bindelle, J.; et al. In vitro prebiotic potential of agricultural by-products on intestinal fermentation, gut barrier and inflammatory status of piglets. Br. J. Nutr. 2020, 123, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Javed, K.; Salman, M.; Sharif, M.; Muneer, H.; Najam, T.; Iqbal, U. Effect of enzymes by substitution of corn with wheat on growth performance and digestibility of broilers. Braz. J. Sci. 2022, 1, 76–86. [Google Scholar] [CrossRef]
- Ward, N.E. Debranching enzymes in corn/soybean meal–based poultry feeds: A review. Poult. Sci. 2021, 100, 765–775. [Google Scholar] [CrossRef]
- Zampiga, M.; Calini, F.; Sirri, F. Importance of feed efficiency for sustainable intensification of chicken meat production: Implications and role for amino acids, feed enzymes and organic trace minerals. World’s Poult. Sci. J. 2021, 77, 639–659. [Google Scholar] [CrossRef]
- Moita, V.H.C.; Kim, S.W. Nutritional and functional roles of phytase and xylanase enhancing the intestinal health and growth of nursery pigs and broiler chickens. Animals 2022, 12, 3322. [Google Scholar] [CrossRef]
- Stefanello, C.; Dalmoro, Y.K.; Rios, H.V.; Vieira, M.S.; Moraes, M.L.; Souza, O.F.; Araujo, M.P.; Stefanello, T.B.; García, R.S.; Boudry, C.; et al. A Bacillus subtilis xylanase improves nutrient digestibility, intestinal health and growth performance of broiler chickens undergoing an intestinal challenge. Poult. Sci. 2025, 104, 104908. [Google Scholar] [CrossRef]
- Li, D.D.; Ding, X.M.; Zhang, K.Y.; Bai, S.P.; Wang, J.P.; Zeng, Q.F.; Su, Z.W.; Kang, L. Effects of dietary xylooligosaccharides on the performance, egg quality, nutrient digestibility and plasma parameters of laying hens. Anim. Feed Sci. Technol. 2017, 225, 20–26. [Google Scholar] [CrossRef]
- Ren, L.; Cao, Q.; Ye, H.; Dong, Z.; Zhang, C.; Yan, F.; Zhou, Y.; Zhou, H.; Zuo, J.; Wang, W. The single degree of polymerization influences the efficacy of xylooligosaccharides in shaping microbial and metabolite profiles in chicken gut to combat avian pathogenic Escherichia coli. BMC Microbiol. 2025, 25, 227. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.M.; Li, D.D.; Bai, S.P.; Wang, J.P.; Zeng, Q.F.; Su, Z.W.; Xuan, Y.; Zhang, K.Y. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poult. Sci. 2018, 97, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Ali, Q.; Ma, S.; La, S.; Guo, Z.; Liu, B.; Gao, Z.; Farooq, U.; Wang, Z.; Zhu, X.; Cui, Y.; et al. Microbial short-chain fatty acids: A bridge between dietary fibers and poultry gut health—A review. Anim. Biosci. 2022, 35, 1461. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of dietary fiber on nutrients utilization and gut health of poultry: A review of challenges and opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef]
- Šimić, A.; González-Ortiz, G.; Mansbridge, S.C.; Rose, S.P.; Bedford, M.R.; Yovchev, D.; Pirgozliev, V.R. Broiler chicken response to xylanase and fermentable xylooligosaccharide supplementation. Poult. Sci. 2023, 102, 103000. [Google Scholar] [CrossRef]
- Kiarie, E.; Romero, L.F.; Ravindran, V. Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poult. Sci. 2014, 93, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. The ARRIVE Guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Aviagen. Ross Broiler: Nutrition Specifications 2022. Available online: https://eu.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerNutritionSpecifications2022-EN.pdf (accessed on 12 February 2025).
- AOAC International. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Pirgozliev, V.R.; Rose, S.P.; Kettlewell, P.S. Effect of ambient storage of wheat samples on their nutritive value for chickens. Br. Poult. Sci. 2006, 47, 342–349. [Google Scholar] [CrossRef]
- van Harn, J.; Spek, J.W.; Bikker, P. Pre-cecal calcium digestibility of eggshell products in broilers. Poult. Sci. 2025, 104, 105090. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Mirza, M.W.; Rose, S.P. Does the effect of pelleting depend on the wheat sample when fed to chickens? Animal 2016, 10, 571–577. [Google Scholar] [CrossRef]
- Whiting, I.M.; Pirgozliev, V.; Rose, S.P.; Wilson, J.; Amerah, A.M.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Oso, A.O. Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult. Sci. 2017, 96, 574–580. [Google Scholar] [CrossRef]
- Tukša, M.; Mansbridge, S.C.; Whiting, I.M.; Šimić, A.; Bedford, M.R.; Rose, S.P.; Pirgozliev, V.R. Assessing the feeding value of wheat for broilers. J. Cent. Eur. Agric. 2025, 26, 293–304. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Whiting, I.; Rose, S.P.; Ivanova, S.G.; Staykova, G.; Amerah, A.M. Variability between wheat dry distillers grains with solubles samples influence the effectiveness of exogenous enzymes when fed to broiler chickens. Vet. Med. Anim. Stud. 2016, 6, 61–69. [Google Scholar] [CrossRef]
- Dhakal, S.; Hetland, H.; Svihus, B. Effect of grinding method and extent of pelleting of broiler diets on performance, feeding behaviour and digestive tract functionality. Br. Poult. Sci. 2025, 66, 227–237. [Google Scholar] [CrossRef]
- Yameen, R.K.; Nazir, A.; Bilal, R.M.; Shahzad, A.; Tahir, M.A.; Farag, M.; Elnesr, S.S.; El-Shall, N.A.; Di Cerbo, A.; Alagawany, M. A review on feed particle size and form: Implications on the performance and gut health of poultry. Poult. Sci. J. 2025, 13, 1–15. [Google Scholar] [CrossRef]
- Vogel, C.L.; Geary, E.L.; Oba, P.M.; Mioto, J.C.; Rudolph, B.C.; Rens, L.; Swanson, K.S. Effects of corn protein inclusion on apparent total tract macronutrient digestibility, palatability, and fecal characteristics, microbiota, and metabolites of healthy adult dogs. J. Anim. Sci. 2025, 103, skaf122. [Google Scholar] [CrossRef]
- Katu, J.K.; Tóth, T.; Varga, L. Enhancing the nutritional quality of low-grade poultry feed ingredients through fermentation: A review. Agriculture 2025, 15, 476. [Google Scholar] [CrossRef]
- Toghyani, M.; Kim, E.; Macelline, S.P.; González-Ortiz, G.; Barekatain, R.; Liu, S.Y. Xylanase and stimbiotic supplementation improve broilers performance and nutrient digestibility across both wheat-barley and corn-based diets. Poult. Sci. 2025, 104, 105224. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Hammandy, M.H.; Mansbridge, S.C.; Whiting, I.M.; Rose, S.P. Efficiency of utilization of metabolizable energy for carcass energy retention in broiler chickens fed maize, wheat or a mixture. Poultry 2024, 3, 85–94. [Google Scholar] [CrossRef]
- Lin, Y.; Lourenco, J.M.; Olukosi, O.A. The effects of protease, xylanase, and xylo-oligosaccharides on growth performance, nutrient utilization, short-chain fatty acids, and microbiota in Eimeria-challenged broiler chickens fed low-protein diet. Poult. Sci. 2023, 102, 102789. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Tugiyanti, E.; Rimbawanto, E.A.; Rosidi, R.; Widiyastuti, T.; Susanto, A.; Ismoyowati, I. Effects of high-level dietary distillers dried grains with solubles supplemented with multienzymes on growth performance, nutrient utilization, intestinal morphology, and pellet quality in broiler chickens. Vet. World 2024, 17, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
- Kandel, M.; Macelline, S.P.; Toghyani, M.; Selle, P.H.; Liu, S.Y. The impact of canola meal and canola seed inclusions in broiler diets. Poult. Sci. 2025, 104, 105017. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.; Cheng, Z.; Liu, X.; Ban, Z.; Guo, Y.; Nie, W. Evaluating and predicting net energy value of wheat and wheat bran for broiler chickens. Anim. Biosci. 2022, 35, 1760. [Google Scholar] [CrossRef]
- Bassi, L.S.; Hejdysz, M.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.A.; Cowieson, A.J.; Kaczmarek, S.A.; Svihus, B. Nutrient digestion efficiency: A comparison between broiler chickens and growing pigs fed maize, barley and oats-based diets with an emphasis on starch. Br. J. Nutr. 2025, 133, 182–193. [Google Scholar] [CrossRef]
- Naeem, M.; Burton, E.J.; Scholey, D.V.; Alkhtib, A.; Broadberry, S. Use of wheat dilution to improve digestive function in broilers: Application in low protein diets. Br. Poult. Sci. 2024, 65, 144–153. [Google Scholar] [CrossRef]
- Hikawczuk, T.; Wróblewska, P.; Szuba-Trznadel, A.; Rusiecka, A.; Zinchuk, A.; Laszki-Szcząchor, K. A multiple regression model analysing additional sources of dietary fibre as a factor affecting the development of the gastrointestinal tract in broiler chickens. Appl. Sci. 2025, 15, 4994. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Bedford, M.R. Energy utilisation and growth performance of chickens fed diets containing graded levels of supplementary bacterial phytase. Br. J. Nutr. 2013, 109, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, U.K.; Kim, I.H. Effect of different metabolizable energy diets on broilers’ growth performance, nutrient digestibility, organ weight, fecal score and lesion score. J. Anim. Physiol. Anim. Nutr. 2025, 109, 957–964. [Google Scholar] [CrossRef]
- de Sousa, L.S.; da Silva, D.H.L.; Cardoso, A.R.; Moreira, L.G.; Rios, D.L.; Ecco, R.; Araújo, I.C.S.; Lara, L.J.C. Cecal microbial composition and serum concentration of short-chain fatty acids in laying hens fed different fiber sources. Braz. J. Microbiol. 2025, 56, 709–722. [Google Scholar] [CrossRef]
- Fan, X.; Qin, Y.; Gao, Y.; Wang, P.; Chang, J.; Wang, L.; Jin, S.; Li, X.; Yin, Q.; Liu, C.; et al. Evaluation of fermentation characteristics of different dietary fiber sources using a cecum in vitro fermentation model. LWT 2025, 192, 117944. [Google Scholar] [CrossRef]
- Incharoen, T.; Nopparatmaitree, M.; Kongkeaw, A.; Soisuwan, K.; Likittrakulwong, W.; Thongnum, A.; Norbu, N.; Tenzin, J.; Supatsaraphokin, N.; Loor, J.J. Dietary micronized hemp fiber enhances in vitro nutrient digestibility and cecal fermentation, antioxidant enzyme, lysosomal activity, and productivity in finisher broilers reared under thermal stress. Front. Anim. Sci. 2025, 6, 1553829. [Google Scholar] [CrossRef]
- Leiber, F.; Helbing, M.; Steiner, A.K.; Amsler, Z.; Tonn, B.; Amelchanka, S.L.; Terranova, M.; Quander-Stoll, N. Effects of dietary forage on feed efficiency of poultry from a slow-growing and a dual-purpose strain for organic fattening systems. Biol. Agric. Hortic. 2025, 41, 134–149. [Google Scholar] [CrossRef]
- Makowski, Z.; Lipiński, K.; Mazur-Kuśnirek, M. The effects of sodium butyrate, coated sodium butyrate, and butyric acid glycerides on nutrient digestibility, gastrointestinal function, and fecal microbiota in turkeys. Animals 2022, 12, 1836. [Google Scholar] [CrossRef]
- Mallo, J.J.; Sol, C.; Puyalto, M.; Bortoluzzi, C.; Applegate, T.J.; Villamide, M.J. Evaluation of sodium butyrate and nutrient concentration for broiler chickens. Poult. Sci. 2021, 100, 101456. [Google Scholar] [CrossRef]
- Pires, M.F.; Jacob, D.V.; Leandro, N.S.M.; Mendonça, R.A.N.; Faria, I.D.S.; Carvalho, D.P.; de Oliveira, H.F.; Café, M.B.; Stringhini, J.H. Effects of protected sodium butyrate and reduced energy content in diets for broiler chickens. South Afr. J. Anim. Sci. 2022, 52, 241–251. [Google Scholar]
- He, Z.; Fahey, A.G.; Liu, R.; Wen, J.; Zhao, G. Research note: Investigating correlations of poultry SCFAs in duodenum, cecum, liver and serum with cecum microbiota and residual feed intake. Poult. Sci. 2025, 104, 105521. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.; Abdellatif, H.; Al-Sagan, A.; Melegy, T.; Prince, A.; El-Banna, R. Efficiency of xylanase, emulsifier, and guanidinoacetic acid in restoring energy deficit in male broilers fed low metabolisable energy diets. J. Adv. Vet. Res. 2024, 14, 103–112. [Google Scholar]
- Luo, D.; Li, J.; Xing, T.; Zhang, L.; Gao, F. Combined effects of xylo-oligosaccharides and coated sodium butyrate on growth performance, immune function, and intestinal physical barrier function of broilers. Anim. Sci. J. 2021, 92, e13545. [Google Scholar] [CrossRef]
- Deng, F.; Tang, S.; Zhao, H.; Zhong, R.; Liu, L.; Meng, Q.; Zhang, H.; Chen, L. Combined effects of sodium butyrate and xylo-oligosaccharide on growth performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers at early stage. Poult. Sci. 2023, 102, 102585. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; Eeckhaut, V.; Van Immerseel, F. The Gordon Memorial Lecture: Steering the gut microbiome for improved health and welfare in broilers. Br. Poult. Sci. 2025, 66, 419–428. [Google Scholar] [CrossRef]
- Jadhav, V.V.; Fasina, Y.O.; Harrison, S.H. Dietary polyunsaturated fatty acids effect on cecal microbiome profile of maturing broiler chicken. Poult. Sci. 2025, 104, 105167. [Google Scholar] [CrossRef]
- Xu, P.; Liu, C.; Ding, H.; Chen, P.; Fan, X.; Wang, X.; Li, S.; Peng, J.; Zhou, Z.; Shi, D.; et al. Effect of bio-fermented distillers grain on growth, intestines, and caecal microbial community in broilers. Fermentation 2025, 11, 118. [Google Scholar] [CrossRef]
- Zardinoni, G.; Huerta, A.; Boskovic Cabrol, M.; Trocino, A.; Fonsatti, E.; Ballarin, C.; Bortoletti, M.; Birolo, M.; Bordignon, F.; Stevanato, P.; et al. Gut response to the dietary supplementation with sodium butyrate in broiler chickens: Morphology and microbiota composition and predictive functional groups. Ital. J. Anim. Sci. 2025, 24, 123–136. [Google Scholar] [CrossRef]
- Yuan, J.; Ajuwon, K.M.; Adeola, O. Impact of partially defatted black soldier fly larvae meal on coccidia-infected chickens: Effects on growth performance, intestinal health, and cecal short-chain fatty acid concentrations. J. Anim. Sci. Biotechnol. 2025, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Dastar, B.; Ashayerizadeh, A.; Sharifi, F.; Jazi, V. Replacement of soybean meal with fermented rapeseed meal in broiler diets: Impacts on growth performance, gut health, and nutrient digestibility. Poult. Sci. 2025, 104, 105616. [Google Scholar] [CrossRef]
Ingredient (g/kg) | Maize Starter | Wheat Starter | Maize Grower/Finisher | Wheat Grower/Finisher |
---|---|---|---|---|
Maize | 595.60 | - | 659.40 | - |
Wheat | - | 604.00 | - | 667.00 |
Rapeseed Solv Ext | 50.00 | 50.00 | 50.00 | 50.00 |
Soybean meal 48 | 311.70 | 278.60 | 251.20 | 216.40 |
Soy oil | 9.3 | 34.90 | 14.40 | 42.80 |
Salt | 3.1 | 3.1 | 3.1 | 3.1 |
Sodium Bicarbonate | 0.9 | 0.5 | 0.9 | 0.5 |
Limestone | 8.2 | 9.6 | 7 | 8.6 |
Mono Calcium Phos | 10.9 | 7.9 | 5.3 | 1.9 |
Quantum Blue | 0.1 | 0.1 | 0.1 | 0.1 |
Vitamin premix 1 | 5 | 5 | 5 | 5 |
Calculated values | ||||
ME (MJ/kg) | 12.45 | 12.45 | 12.90 | 12.90 |
Crude protein (g/kg) | 215.0 | 219.8 | 190.0 | 195.8 |
Calcium (g/kg) | 9.6 | 9.6 | 7.8 | 7.8 |
Phosphorus (g/kg) | 7.9 | 7.6 | 6.5 | 6.2 |
Available Phosphorus (g/kg) | 4.8 | 4.8 | 3.6 | 3.6 |
Crude fat (g/kg) | 37.3 | 48.7 | 44.0 | 56.7 |
Neutral Detergent Fiber (g/kg) | 30.8 | 30.2 | 30.3 | 29.6 |
Ash (g/kg) | 54.4 | 54.4 | 45.1 | 45.2 |
Lysine (g/kg) | 1.7 | 2.4 | 1.5 | 2.1 |
Methionine + Cysteine (g/kg) | 9.4 | 9.1 | 7.6 | 7.2 |
Tryptophan (g/kg) | 2.4 | 2.6 | 2.1 | 2.3 |
Name | Cereal | Econase XT (0.1 g/kg) | Rice Bran (75 g/kg) |
---|---|---|---|
Diet 1 | maize | no | no |
Diet 2 | maize | yes | no |
Diet 3 | maize | no | yes |
Diet 4 | maize | yes | yes |
Diet 5 | wheat | no | no |
Diet 6 | wheat | yes | no |
Diet 7 | wheat | no | yes |
Diet 8 | wheat | yes | yes |
DM (g/kg) | GE (MJ/kg) | Nitrogen (g/kg) | NDF (g/kg) | Starch (g/kg) | |
---|---|---|---|---|---|
Maize | 881 | 16.55 | 30.62 | 92 | 444 |
Wheat | 879 | 17.14 | 32.31 | 99 | 462 |
Rice bran | 916 | 18.92 | 24.58 | 254 | nd |
Maize + RB | 884 | 16.73 | 30.17 | 104 | 411 |
Wheat + RB | 882 | 17.27 | 31.73 | 110 | 427 |
Diet | XYL | Expected XYL Activity | Analyzed XYL Activity Starter | Analyzed XYL Activity Finisher |
---|---|---|---|---|
Diet 1 | No | 0 | <2000 | <2000 |
Diet 2 | Yes | 16,000 | 22,400 | 18,000 |
Diet 3 | No | 0 | <2000 | <2000 |
Diet 4 | Yes | 16,000 | 16,200 | 17,000 |
Diet 5 | No | 0 | <2000 | <2000 |
Diet 6 | Yes | 16,000 | 14,300 | 15,600 |
Diet 7 | No | 0 | <2000 | <2000 |
Diet 8 | Yes | 16,000 | 15,700 | 20,100 |
Treatment | XYL | Bran | FI Starter | FI Grower | WG Starter | WG Grower | mFCR Starter | mFCR Grower |
---|---|---|---|---|---|---|---|---|
Cereal | ||||||||
Wheat | 33.03 | 104.02 | 20.52 | 62.19 | 1.659 | 1.663 | ||
Maize | 39.13 | 105.66 | 23.65 | 61.07 | 1.645 | 1.729 | ||
SEM | 0.513 | 1.306 | 0.835 | 1.320 | 0.0377 | 0.0274 | ||
Bran | ||||||||
No | 35.94 | 108.24 | 23.63 | 64.42 | 1.532 | 1.677 | ||
Yes | 36.22 | 101.44 | 20.54 | 58.27 | 1.791 | 1.732 | ||
SEM | 0.513 | 1.306 | 0.835 | 1.320 | 0.0377 | 0.0274 | ||
XYL | ||||||||
No | 35.70 | 104.55 | 21.51 | 61.44 | 1.711 | 1.711 | ||
Yes | 35.97 | 105.13 | 22.66 | 61.83 | 1.613 | 1.698 | ||
SEM | 0.513 | 1.306 | 0.835 | 1.320 | 0.0377 | 0.0274 | ||
Cereal × Bran | ||||||||
Wheat | No | 33.26 | 110.48 b | 22.66 | 66.90 c | 1.485 | 1.657 | |
Yes | 32.81 | 97.57 a | 18.37 | 57.48 a | 1.832 | 1.680 | ||
Maize | No | 38.10 | 108.00 b | 24.61 | 63.09 bc | 1.560 | 1.708 | |
Yes | 39.17 | 105.31 ab | 22.70 | 59.06 ab | 1.731 | 1.785 | ||
SEM | 0.726 | 1.847 | 0.835 | 1.867 | 0.0534 | 0.0388 | ||
Cereal × XYL | ||||||||
Wheat | No | 32.53 | 104.22 | 19.97 | 61.83 | 1.692 | 1.673 | |
Yes | 33.54 | 103.83 | 21.06 | 62.55 | 1.625 | 1.653 | ||
Maize | No | 38.87 | 104.88 | 23.04 | 61.05 | 1.710 | 1.749 | |
Yes | 38.41 | 106.43 | 24.27 | 61.10 | 1.581 | 1.744 | ||
SEM | 0.726 | 1.847 | 1.180 | 1.867 | 0.0534 | 0.0388 | ||
XYL × Bran | ||||||||
No | No | 35.29 | 106.87 | 23.14 | 64.27 | 1.547 | 1.681 | |
No | Yes | 36.10 | 102.23 | 19.87 | 58.46 | 1.855 | 1.741 | |
Yes | No | 36.06 | 109.61 | 24.13 | 65.57 | 1.498 | 1.674 | |
Yes | Yes | 35.88 | 100.65 | 21.20 | 58.08 | 1.708 | 1.723 | |
SEM | 0.726 | 1.847 | 1.180 | 1.867 | 0.0534 | 0.0388 | ||
Cereal × XYL × Bran | ||||||||
Wheat | No | No | 32.42 | 110.09 | 22.08 | 66.14 | 1.494 | 1.654 |
No | Yes | 32.64 | 98.34 | 17.87 | 57.52 | 1.890 | 1.692 | |
Yes | No | 34.10 | 110.87 | 23.24 | 67.66 | 1.476 | 1.640 | |
Yes | Yes | 32.97 | 96.79 | 18.88 | 57.44 | 1.774 | 1.667 | |
Maize | No | No | 38.17 | 103.65 | 24.20 | 62.41 | 1.600 | 1.708 |
No | Yes | 39.56 | 106.11 | 21.88 | 59.40 | 1.820 | 1.790 | |
Yes | No | 38.03 | 108.35 | 25.01 | 63.48 | 1.520 | 1.708 | |
Yes | Yes | 38.78 | 104.52 | 23.52 | 58.72 | 1.641 | 1.780 | |
SEM | 1.026 | 2.612 | 1.669 | 2.640 | 0.0755 | 0.0549 | ||
Significance | ||||||||
Cereal | <0.001 | 0.381 | <0.001 | 0.402 | 0.806 | <0.001 | ||
Bran | 0.717 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
XYL | 0.712 | 0.754 | 0.173 | 0.770 | 0.087 | 0.365 | ||
Cereal × Bran | 0.300 | 0.002 | 0.161 | 0.047 | 0.106 | 0.117 | ||
Cereal × XYL | 0.319 | 0.602 | 0.932 | 0.802 | 0.564 | 0.584 | ||
XYL × Bran | 0.497 | 0.250 | 0.838 | 0.565 | 0.392 | 0.695 | ||
Cereal × XYL × Bran | 0.805 | 0.595 | 0.771 | 0.979 | 0.995 | 0.980 |
Treatment | XYL | Bran | FI | WG | mFCR | BW |
---|---|---|---|---|---|---|
Cereal | ||||||
Wheat | 68.53 | 41.35 | 1.654 | 1212 | ||
Maize | 73.07 | 42.50 | 1.703 | 1245 | ||
SEM | 0.942 | 1.068 | 0.0126 | 30.5 | ||
Bran | ||||||
No | 72.67 | 44.81 | 1.632 | 1299 | ||
Yes | 68.92 | 39.44 | 1.743 | 1159 | ||
SEM | 0.942 | 1.068 | 0.0126 | 30.5 | ||
XYL | ||||||
No | 70.64 | 41.85 | 1.697 | 1215 | ||
Yes | 70.95 | 42.40 | 1.664 | 1243 | ||
SEM | 0.942 | 1.068 | 0.0126 | 30.5 | ||
Cereal × Bran | ||||||
Wheat | No | 72.03 b | 44.88 | 1.605 | 1311 | |
Yes | 65.02 a | 37.83 | 1.711 | 1113 | ||
Maize | No | 73.30 b | 43.94 | 1.650 | 1287 | |
Yes | 72.83 b | 41.06 | 1.757 | 1206 | ||
SEM | 1.332 | 1.511 | 0.0179 | 43.1 | ||
Cereal × XYL | ||||||
Wheat | No | 68.26 | 40.83 | 1.665 | 1199 | |
Yes | 68.79 | 41.88 | 1.643 | 1225 | ||
Maize | No | 73.02 | 42.09 | 1.738 | 1232 | |
Yes | 73.11 | 42.91 | 1.704 | 1261 | ||
SEM | 1.332 | 1.511 | 0.0179 | 43.1 | ||
XYL × Bran | ||||||
No | No | 71.92 | 43.71 | 1.635 | 1279 | |
No | Yes | 69.36 | 39.20 | 1.768 | 1152 | |
Yes | No | 73.41 | 45.11 | 1.629 | 1320 | |
Yes | Yes | 68.49 | 39.68 | 1.718 | 1166 | |
SEM | 1.332 | 1.511 | 0.0179 | 43.1 | ||
Cereal × XYL × Bran | ||||||
Wheat | No | No | 71.19 | 45.65 | 1.596 | 1288 |
No | Yes | 65.33 | 37.58 | 1.734 | 1109 | |
Yes | No | 72.87 | 45.69 | 1.596 | 1334 | |
Yes | Yes | 64.72 | 38.07 | 1.689 | 1117 | |
Maize | No | No | 72.65 | 43.35 | 1.674 | 1269 |
No | Yes | 73.38 | 40.82 | 1.786 | 1195 | |
Yes | No | 73.96 | 44.53 | 1.662 | 1306 | |
Yes | Yes | 72.27 | 41.29 | 1.746 | 1216 | |
SEM | 1.884 | 2.137 | 0.0253 | 60.9 | ||
Significance | ||||||
Cereal | 0.001 | 0.290 | <0.001 | 0.264 | ||
Bran | 0.008 | <0.001 | <0.001 | <0.001 | ||
XYL | 0.815 | 0.591 | 0.121 | 0.367 | ||
Cereal × Bran | 0.019 | 0.058 | 0.779 | 0.063 | ||
Cereal × XYL | 0.870 | 0.783 | 0.736 | 0.970 | ||
XYL × Bran | 0.381 | 0.951 | 0.222 | 0.660 | ||
Cereal × XYL × Bran | 0.980 | 0.775 | 0.965 | 0.870 |
Treatment | XYL | Bran | AMEn | DMR | NR | NDFD | ECR | SD | ND |
---|---|---|---|---|---|---|---|---|---|
Cereal | |||||||||
Wheat | 11.70 | 0.681 | 0.562 | 0.198 | 19.04 | 0.951 | 0.728 | ||
Maize | 11.67 | 0.703 | 0.615 | 0.122 | 19.62 | 0.942 | 0.713 | ||
SEM | 0.055 | 0.0032 | 0.0060 | 0.0127 | 0.151 | 0.0017 | 0.0065 | ||
Bran | |||||||||
No | 11.89 | 0.712 | 0.610 | 0.190 | 19.07 | 0.948 | 0.725 | ||
Yes | 11.48 | 0.673 | 0.568 | 0.130 | 19.59 | 0.945 | 0.715 | ||
SEM | 0.055 | 0.0032 | 0.0060 | 0.0127 | 0.151 | 0.0017 | 0.0065 | ||
XYL | |||||||||
No | 11.60 | 0.684 | 0.583 | 0.143 | 19.34 | 0.944 | 0.720 | ||
Yes | 11.78 | 0.693 | 0.595 | 0.177 | 19.31 | 0.949 | 0.721 | ||
SEM | 0.055 | 0.0032 | 0.0060 | 0.0127 | 0.151 | 0.0017 | 0.0065 | ||
Cereal × Bran | |||||||||
Wheat | No | 11.93 | 0.703 | 0.585 | 0.251 | 18.81 | 0.951 | 0.729 | |
Yes | 11.48 | 0.654 | 0.539 | 0.145 | 19.27 | 0.951 | 0.727 | ||
Maize | No | 11.85 | 0.723 | 0.634 | 0.128 | 19.33 | 0.945 | 0.721 | |
Yes | 11.49 | 0.684 | 0.597 | 0.116 | 19.91 | 0.943 | 0.704 | ||
SEM | 0.078 | 0.0053 | 0.0085 | 0.0180 | 0.214 | 0.0025 | 0.0092 | ||
Cereal × XYL | |||||||||
Wheat | No | 11.58 | 0.672 | 0.558 | 0.163 | 18.93 | 0.947 | 0.721 | |
Yes | 11.83 | 0.681 | 0.567 | 0.234 | 19.15 | 0.956 | 0.735 | ||
Maize | No | 11.62 | 0.691 | 0.608 | 0.124 | 19.75 | 0.942 | 0.718 | |
Yes | 11.72 | 0.705 | 0.623 | 0.119 | 19.48 | 0.943 | 0.707 | ||
SEM | 0.078 | 0.0053 | 0.0085 | 0.0180 | 0.214 | 0.0025 | 0.0092 | ||
XYL × Bran | |||||||||
No | No | 11.73 | 0.705 | 0.593 | 0.148 | 18.95 | 0.945 | 0.711 ab | |
No | Yes | 11.46 | 0.673 | 0.573 | 0.231 | 19.19 | 0.944 | 0.728 ab | |
Yes | No | 12.04 | 0.723 | 0.636 | 0.139 | 19.74 | 0.951 | 0.739 b | |
Yes | Yes | 11.51 | 0.672 | 0.564 | 0.122 | 19.44 | 0.947 | 0.702 a | |
SEM | 0.078 | 0.0053 | 0.0085 | 0.0180 | 0.214 | 0.0025 | 0.0092 | ||
Cereal × XYL × Bran | |||||||||
Wheat | No | No | 11.61 ab | 0.681 ab | 0.553 b | 0.166 a | 19.51 | 0.944 | 0.701 |
No | Yes | 11.54 ab | 0.663 ab | 0.563 b | 0.160 a | 20.00 | 0.949 | 0.741 | |
Yes | No | 12.25 c | 0.714 cd | 0.618 cd | 0.337 b | 19.14 | 0.958 | 0.757 | |
Yes | Yes | 11.42 a | 0.644 a | 0.517 a | 0.130 a | 19.82 | 0.953 | 0.712 | |
Maize | No | No | 11.87 b | 0.711 cd | 0.633 d | 0.131 a | 18.39 | 0.946 | 0.721 |
No | Yes | 11.38 a | 0.673 ab | 0.583 bc | 0.117 a | 19.48 | 0.937 | 0.715 | |
Yes | No | 11.84 b | 0.722 d | 0.635 d | 0.125 a | 19.24 | 0.944 | 0.722 | |
Yes | Yes | 11.61 ab | 0.691 bc | 0.611 cd | 0.114 a | 19.06 | 0.942 | 0.692 | |
SEM | 0.111 | 0.0072 | 0.0121 | 0.0255 | 0.428 | 0.0035 | 0.0131 | ||
Significance | |||||||||
Cereal | 0.679 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | 0.109 | ||
Bran | <0.001 | <0.001 | <0.001 | 0.002 | 0.019 | 0.230 | 0.287 | ||
XYL | 0.027 | 0.096 | 0.162 | 0.075 | 0.889 | 0.058 | 0.896 | ||
Cereal × Bran | 0.596 | 0.831 | 0.628 | 0.013 | 0.763 | 0.248 | 0.415 | ||
Cereal × XYL | 0.322 | 0.619 | 0.743 | 0.044 | 0.265 | 0.123 | 0.188 | ||
XYL × Bran | 0.130 | 0.200 | 0.019 | 0.009 | 0.211 | 0.654 | 0.006 | ||
Cereal × XYL × Bran | 0.002 | 0.002 | <0.001 | 0.007 | 0.095 | 0.088 | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tukša, M.; Mansbridge, S.C.; Bedford, M.R.; Rose, S.P.; Pirgozliev, V.R. Broiler Chicken Response to Xylanase and Rice Bran Supplementation in Wheat- and Maize-Based Diets. Poultry 2025, 4, 41. https://doi.org/10.3390/poultry4030041
Tukša M, Mansbridge SC, Bedford MR, Rose SP, Pirgozliev VR. Broiler Chicken Response to Xylanase and Rice Bran Supplementation in Wheat- and Maize-Based Diets. Poultry. 2025; 4(3):41. https://doi.org/10.3390/poultry4030041
Chicago/Turabian StyleTukša, Marko, Stephen C. Mansbridge, Michael R. Bedford, Stephen P. Rose, and Vasil R. Pirgozliev. 2025. "Broiler Chicken Response to Xylanase and Rice Bran Supplementation in Wheat- and Maize-Based Diets" Poultry 4, no. 3: 41. https://doi.org/10.3390/poultry4030041
APA StyleTukša, M., Mansbridge, S. C., Bedford, M. R., Rose, S. P., & Pirgozliev, V. R. (2025). Broiler Chicken Response to Xylanase and Rice Bran Supplementation in Wheat- and Maize-Based Diets. Poultry, 4(3), 41. https://doi.org/10.3390/poultry4030041