Effect of Interrupting the Daily Scotophase Period on Laying Hen Performance, Bone Health, Behavior, and Welfare; Part I: Bone Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals and Housing
2.3. Treatments
2.4. Blood Analysis
2.5. In Vivo Computed Tomography (CT) Image Procurement and Analysis
2.6. Measures of Bone Health Ex Vivo
2.6.1. Tibia Breaking Strength
2.6.2. Tibia Ash Percentage
2.7. Statistical Analysis
3. Results
3.1. Serum Calcium Concentration
3.2. Bone Demineralization
3.3. Tibiotarsal CT Image Analysis
3.4. Tibia Ash Percentage
3.5. Tibia Biomechanical Properties
4. Discussion
4.1. Serum Calcium
4.2. Bone Demineralization
4.3. CT Image Analysis
4.4. Tibia Ash Percentage
4.5. Bone Biomechanical Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Notter, D.R. The importance of genetic diversity in livestock populations of the future1. J. Anim. Sci. 1999, 77, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Romanov, M.N.; Weigend, S. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poult. Sci. 2001, 80, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Wolc, A.; Arango, J.; Jankowski, T.; Dunn, I.; Settar, P.; Fulton, J.; O’Sullivan, N.; Preisinger, R.; Fernando, R.; Garrick, D.; et al. Genome-wide association study for egg production and quality in layer chickens. J. Anim. Breed. Genet. 2014, 131, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.; Murrell, J.; Wilkins, L.; Nicol, C. The effect of keel fractures on egg-production parameters, mobility and behavior in individual laying hens. Anim. Welf. 2012, 21, 127–135. [Google Scholar] [CrossRef]
- Whitehead, C.; Fleming, R. Osteoporosis in cage layers. Poult. Sci. 2000, 79, 1033–1041. [Google Scholar] [CrossRef]
- Rennie, J.S.; Fleming, R.; McCormack, H.A.; McCorquodale, C.C.; Whitehead, C.C. Studies on effects of nutritional factors on bone structure and osteoporosis in laying hens. Br. Poult. Sci. 1997, 38, 417–424. [Google Scholar] [CrossRef]
- Koutoulis, K.; Kyriazakis, I.; Perry, G.; Lewis, P. Effect of Different Calcium Sources and Calcium Intake on Shell Quality and Bone Characteristics of Laying Hens at Sexual Maturity and End of Lay. Int. J. Poult. Sci. 2009, 8, 342–348. [Google Scholar] [CrossRef]
- van de Velde, J.; Vermeiden, J.; Touw, J.; Veldhuijzen, J. Changes in activity of chicken medullary bone cell populations in relation to the egg-laying cycle. Metab. Bone Dis. Relat. Res. 1984, 5, 191–193. [Google Scholar] [CrossRef]
- Whitehead, C.C. Overview of bone biology in the egg-laying hen. Poult. Sci. 2004, 83, 193–199. [Google Scholar] [CrossRef]
- Wilson, S.; Duff SR, I.; Whitehead, C.C. Effects of age, sex and housing on the trabecular bone of laying strain domestic fowl. Res. Vet. Sci. 1992, 53, 52–58. [Google Scholar] [CrossRef]
- Jendral, M.; Korver, D.; Church, J.; Feddes, J. Bone Mineral Density and Breaking Strength of White Leghorns Housed in Conventional, Modified, and Commercially Available Colony Battery Cages. Poult. Sci. 2008, 87, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.M.; Hansen, K.K. Role of estrogen in avian osteoporosis. Poult. Sci. 2004, 83, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Dacke, C.G.; Arkle, S.; Cook, D.J.; Wormstone, I.M.; Jones, S.; Zaidi, M.; Bascal, Z.A. Medullary bone and avian calcium regulation. J. Exp. Biol. 1993, 184, 63–88. [Google Scholar] [CrossRef]
- Hans, D.; Krieg, M. The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2008, 55, 1529–1538. [Google Scholar] [CrossRef]
- Johnson, M.L.; Lara, N.; A Kamel, M. How genomics has informed our understanding of the pathogenesis of osteoporosis. Genome Med. 2009, 1, 84. [Google Scholar] [CrossRef]
- Saunders-Blades, J.L.; MacIsaac, J.L.; Korver, D.R.; Anderson, D.M. The effect of calcium source and particle size on the production performance and bone quality of laying hens. Poult. Sci. 2009, 88, 338–353. [Google Scholar] [CrossRef]
- Araujo JA, D.; Silva JH, V.D.; Costa FG, P.; Sousa JM, B.D.; Givisiez PE, N.; Sakomura, N.K. Effect of the levels of calcium and particle size of limestone on laying hens. Rev. Bras. Zootec. 2011, 40, 997–1005. [Google Scholar] [CrossRef]
- Whitehead, C. Skeletal disorders in laying hens: The problem of osteoporosis and bone fractures. Poult. Sci. Symp. World’s Poult. Sci. Assoc. 2004, 27, 259–278. [Google Scholar]
- Rubin, C.-J.; Brändström, H.; Wright, D.; Kerje, S.; Gunnarsson, U.; Schutz, K.; Fredriksson, R.; Jensen, P.; Andersson, L.; Ohlsson, C.; et al. Quantitative trait loci for BMD and bone strength in an intercross between domestic and wildtype chickens. J. Bone Miner. Res. 2007, 22, 375–384. [Google Scholar] [CrossRef]
- Cransberg, P.H.; Parkinson, G.; Wilson, S.; Thorp, B. Sequential studies of skeletal calcium reserves and structural bone volume in a commercial layer flock. Br. Poult. Sci. 2001, 42, 260–265. [Google Scholar] [CrossRef]
- Silversides, F.G.; Korver, D.R.; Budgell, K.L. Effect of strain of layer and age at photostimulation on egg production, egg quality, and bone strength. Poult. Sci. 2006, 85, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.F.; Pang, C.S.; Poon AM, S.; Wan, Q.; Song, Y.; Brown, G.M. An overview of melatonin and melatonin receptors in birds. Poult. Avian Biol. Rev. 1996, 7, 217–228. [Google Scholar]
- Lewis, P.D.; Morris, T.R. Poultry and coloured light. Worlds Poult. Sci. J. 2000, 56, 189–207. [Google Scholar] [CrossRef]
- Govardovskiĭ, V.I.; Zueva, L.V. Visual pigments of chicken and pigeon. Vis. Res. 1977, 17, 537–543. [Google Scholar] [CrossRef]
- Kelber, A.; Vorobyev, M.; Osorio, D. Animal colour vision--behavioural tests and physiological concepts. Biol. Rev. Camb. Philos. Soc. 2003, 78, 81–118. [Google Scholar] [CrossRef]
- Prescott, N.B.; Wathes, C.M. Spectral sensitivity of the domestic fowl (Gallus g. domesticus). Br. Poult. Sci. 1999, 40, 332–339. [Google Scholar] [CrossRef]
- Li, T.; Howland, H.C. The effects of constant and diurnal illumination of the pineal gland and the eyes on ocular growth in chicks. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3692–3697. [Google Scholar] [CrossRef]
- Imtd, J.; Rossi, L. Influence of Artificial Lighting on the Performance and Egg Quality of Commercial Layers: A Review. Braz. J. Poult. Sci. 2014, 16, 337–344. [Google Scholar]
- Thiele, H.H. Light stimulation of commercial layers. Lohmann Inf. 2009, 44, 28–37. [Google Scholar]
- Abbas, A.O.; Gehad, A.E.; Hendricks, G.L.; Gharib HB, A.; Mashaly, M.M. The Effect of Lighting Program and Melatonin on the Alleviation of the Negative Impact of Heat Stress on the Immune Response in Broiler Chickens. Int. J. Poult. Sci. 2007, 6, 651–660. [Google Scholar] [CrossRef]
- Navara, K.J.; Nelson, R.J. The dark side of light at night: Physiological, epidemiological, and ecological consequences. J. Pineal Res. 2007, 43, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Lazăr, R.; Solcan, C.; Creţu, C.; Lazăr, M.; Muntean, C.; Boişteanu, P.C. Characterization of the relations between morphology and physiological status of the pineal gland in connection with the somatic development level in turkeys reared in Romania. Arq. Bras. Med. Veterinária Zootec. 2015, 67, 763–770. [Google Scholar] [CrossRef]
- Stehle, J.H.; Von Gall, C.; Korf, H.W. Melatonin: A clock-output, a clock-input. J. Neuroendocrinol. 2003, 15, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, A.K.; Kumar, V. Melatonin: An internal signal for daily and seasonal timing. Indian. J. Exp. Biol. 2014, 52, 425–437. [Google Scholar]
- Csernus, V.J. The avian pineal gland. Chronobiol. Int. 2006, 23, 329–339. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, B.P.; Rani, S. The Bird Clock: A Complex, Multi-Oscillatory and Highly Diversified System. Biol. Rhythm Res. 2004, 35, 121–144. [Google Scholar] [CrossRef]
- Bubenik, G.A. Gastrointestinal melatonin: Localization, function, and clinical relevance. Dig. Dis. Sci. 2002, 47, 2336–2348. [Google Scholar] [CrossRef]
- Calislar, S.; Yeter, B.; Şahin, A. Importance of melatonin on poultry. J. Agric. Nat. 2018, 21, 987–997. [Google Scholar] [CrossRef]
- Newman, S.; Leeson, S. Skeletal integrity in layers at the completion of egg production. Worlds Poult. Sci. J. 1997, 53, 265–277. [Google Scholar] [CrossRef]
- Whitehead, C. Nutrition and poultry welfare. World’s Poult. Sci. J. 2002, 58, 349–356. [Google Scholar] [CrossRef]
- Harms, R.H.; Douglas, C.R.; Sloan, D.R. Midnight Feeding of Commercial Laying Hens Can Improve Eggshell Quality. J. Appl. Poult. Res. 1996, 5, 1–5. [Google Scholar] [CrossRef]
- Hy-Line International. Hy-Line Management Guide. Available online: https://www.hyline.com/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/W-36/36%20COM%20ENG.pdf (accessed on 4 April 2024).
- Animal Husbandry and Guidelines for U.S. Egg Laying Flocks. United-Egg-Producers. 2017. Available online: https://uepcertified.com/wp-content/uploads/2021/08/CF-UEP-Guidelines_17-3.pdf (accessed on 4 April 2024).
- Zhao, D.; Wang, J.; Liu, Y.; Liu, X. Expressions and clinical significance of serum bone Gla-protein, bone alkaline phosphatase and C-terminal telopeptide of type I collagen in bone metabolism of patients with osteoporosis. Pak. J. Med. Sci. 2015, 31, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.; Eastell, R.; Bruyere, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- Chubb, S.A.P. Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin. Biochem. 2012, 45, 928–935. [Google Scholar] [CrossRef]
- Harrison, C.; Jones, J.; Bridges, W.; Anderson, G.; Ali, A.; Mercuri, J. Associations among computed tomographic measures of bone and muscle quality and biomechanical measures of tibiotarsal bone quality in laying hens. Am. J. Vet. Res. 2023, 84, ajvr.23.05.0109. [Google Scholar] [CrossRef]
- Anderson, M.G.; Johnson, A.M.; Jacobs, L.; Ali, A.B.A. Influence of Perch-Provision Timing on Anxiety and Fearfulness in Laying Hens. Animals 2023, 13, 3003. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Taylor, T.G. How an Eggshell Is Made. Sci. Am. 1970, 222, 88–97. [Google Scholar] [CrossRef]
- Hrabia, A. Chapter 35-Reproduction in the female. In Sturkie’s Avian Physiology, 7th ed.; Scanes, C.G., Dridi, S., Eds.; Academic Press: San Diego, CA, USA, 2022; pp. 941–986. [Google Scholar]
- Kermanshahi, H.; Hadavi, A. Effect of Added Extra Calcium Carbonate into the Diets, One Hour Before Starting Dark Period on Performance and Egg Quality of Laying Hens. Int. J. Poult. Sci. 2006, 5, 946–948. [Google Scholar]
- Roland, D.; Sloan, D.R.; Harms, R.H. Calcium Metabolism in the Laying Hen: 4. The Calcium Status of the Hen at Night1. Poult. Sci. 1973, 52, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Robison, C.I.; Karcher, D.M. Analytical bone calcium and bone ash from mature laying hens correlates to bone mineral content calculated from quantitative computed tomography scans. Poult. Sci. 2019, 98, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Almeida Paz, I.; Bruno, L. Bone mineral density: Review. Braz. J. Poult. Sci. 2006, 8, 69–73. [Google Scholar] [CrossRef]
- Hudson, H.; Britton, W.; Rowland, G.; Buhr, R. Histomorphometric bone properties of sexually immature and mature White Leghorn hens with evaluation of fluorochrome injection on egg production traits. Poult. Sci. 1993, 72, 1537–1547. [Google Scholar] [CrossRef]
- Field, R.A. Ash and calcium as measures of bone in meat and bone mixtures. Meat Sci. 2000, 55, 255–264. [Google Scholar] [CrossRef]
- Cheng, T.K.; Coon, C.N. Sensitivity of Various Bone Parameters of Laying Hens to Different Daily Calcium Intakes1. Poult. Sci. 1990, 69, 2209–2213. [Google Scholar] [CrossRef]
- Al-Batshan, H.A.; Scheideler, S.E.; Black, B.L.; Garlich, J.D.; Anderson, K.E. Duodenal calcium uptake, femur ash, and eggshell quality decline with age and increase following molt. Poult. Sci. 1994, 73, 1590–1596. [Google Scholar] [CrossRef]
- Petruk, A. The Timing of Calcium Intake and its Effect on the Calcium Metabolism of Broiler Breeder and Laying Hens. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2004. [Google Scholar]
- Harrison, C. Evaluation of Bone and Muscle Quality in Laying Hens using Quantitative, Radiographic, Computed Tomographic, Biomechanical, and Tissue Level Measures. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2023. [Google Scholar]
- Fleming, R.; McCormack, H.; McTeir, L.; Whitehead, C. Medullary bone and humeral breaking strength in laying hens. Res. Vet. Sci. 1998, 64, 63–67. [Google Scholar] [CrossRef]
- Jepsen, K.J.; Silva, M.J.; Vashishth, D.; Guo, X.E.; van der Meulen, M.C. Establishing biomechanical mechanisms in mouse models: Practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J. Bone Miner. Res. 2015, 30, 951–966. [Google Scholar] [CrossRef]
Week | Treatment | Start (SRT) (mg/dL) | End (END) (mg/dL) |
---|---|---|---|
20 | C | 29.29 ± 1.52 a,A | 15.58 ± 1.96 a,A |
W1 | 28.96 ± 1.39 a,A | 22.89 ± 1.58 b,A | |
W2 | 30.56 ± 1.99 a,A | 23.63 ± 1.66 b,A | |
p-value | 0.325 | 0.023 | |
30 | C | 26.59 ± 2.06 a,AB | 13.52 ± 1.52 a,A |
W1 | 28.96 ± 1.96 a,A | 19.85 ± 1.03 b,A | |
W2 | 27.63 ± 1.06 a,A | 20.88 ± 1.11 b,A | |
p-value | 0.469 | 0.034 | |
50 | C | 23.56 ± 2.03 a,B | 10.89 ± 1.09 a,B |
W1 | 25.69 ± 1.52 a,AB | 18.59 ± 1.16 b,A | |
W2 | 26.89 ± 1.36 a,AB | 19.66 ± 1.36 b,A | |
p-value | 0.239 | 0.029 | |
70 | C | 20.85 ± 1.19 a,C | 9.58 ± 0.96 a,B |
W1 | 24.36 ± 1.63 a,B | 21.03 ± 1.01 b,A | |
W2 | 23.99 ± 1.21 a,B | 20.88 ± 1.13 b,A | |
p-value | 0.693 | 0.033 |
Total Bone Cross-Sectional Area (TSCA; mm2) | |||||||||
C | W1 | W2 | |||||||
Week | Proximal | Middle | Distal | Proximal | Middle | Distal | Proximal | Middle | Distal |
20 | 70.06 ± 1.03 a,A | 54.96 ± 1.14 a, A | 56.02 ± 1.17 a,A | 70.35 ± 1.03 a,A | 53.91 ± 1.13 a,A | 55.64 ± 1.17 a,A | 70.35 ± 1.02 a,A | 54.02 ± 1.12 a,A | 55.86 ± 1.16 a,A |
30 | 69.85 ± 1.12 a,A | 54.85 ± 1.13 a,A | 55.96 ± 0.67 a,A | 70.21 ± 1.26 a,A | 53.75 ± 1.02 a,A | 55.53 ± 0.61 a,A | 70.28 ± 1.12 a,A | 53.86 ± 0.82 a,A | 55.70 ± 0.73 a,A |
50 | 70.48 ± 1.13 a,A | 55.29 ± 1.14 a,A | 56.46 ± 0.67 a,A | 70.84 ± 1.27 a,A | 54.18 ± 1.03 a,A | 56.03 ± 0.67 a,A | 70.92 ± 1.13 a,A | 54.13 ± 0.82 a,A | 56.03 ± 0.73 a,A |
70 | 70.38 ± 1.13 a,A | 55.24 ± 1.14 a,A | 55.29 ± 0.67 a,A | 70.81 ± 1.27 a,A | 54.22 ± 1.03 a,A | 56.09 ± 0.61 a,A | 70.22 ± 1.12 a,A | 54.36 ± 0.83 a,A | 55.85 ± 0.73 a,A |
p-value | 0.856 | 0.563 | 0.425 | 0.558 | 0.639 | 0.785 | 0.569 | 0.748 | 0.879 |
Total Bone Mineral Density (TBMD; mg/cm3) | |||||||||
C | W1 | W2 | |||||||
Week | Proximal | Middle | Distal | Proximal | Middle | Distal | Proximal | Middle | Distal |
20 | 625 ± 36.58 a,A | 922 ± 29.85 a,A | 1025 ± 31.52 a,A | 663 ± 30.25 a,A | 1021 ± 29.63 a,A | 989 ± 26.85 a,A | 701 ± 32.25 a,A | 999 ± 33.63 a,A | 1097 ± 31.99 a,A |
30 | 399 ± 13.70 a,B | 563 ± 11.03 a,B | 611 ± 15.88 a,B | 578 ± 15.41 b,B | 818 ± 22.49 b,B | 904 ± 14.56 b,B | 595 ± 14.03 b,B | 835 ± 18.85 b,B | 913 ± 17.41 b,B |
50 | 380 ± 25.69 a,B | 489 ± 41.20 a,C | 520 ± 52.26 a,C | 566 ± 42.53 b,B | 794 ± 66.83 b,B | 877 ± 88.15 b,B | 571 ± 34.47 b,B | 818 ± 52.70 b,B | 885 ± 61.54 b,B |
70 | 311 ± 29.85 a,C | 391 ± 32.96 a,D | 421 ± 42.33 a,D | 521 ± 39.17 b,B | 754 ± 63.49 b,B | 824 ± 82.86 b,B | 508 ± 30.68 b,C | 736 ± 47.43 b,C | 850 ± 59.07 b,C |
p-value | 0.035 | 0.025 | 0.033 | 0.043 | 0.044 | 0.039 | 0.021 | 0.022 | 0.028 |
Cortex Cross-Sectional Area (CCSA; mm2) | |||||||||
C | W1 | W2 | |||||||
Week | Proximal | Middle | Distal | Proximal | Middle | Distal | Proximal | Middle | Distal |
20 | 37.47 ± 1.59 a,A | 28.17 ± 1.12 a,A | 28.72 ± 1.05 a,A | 37.96 ± 2.57 a,A | 28.19 ± 1.99 a,A | 29.06 ± 1.04 a,A | 38.57 ± 1.55 aA | 28.53 ± 1.12 a,A | 29.38 ± 1.03 a,A |
30 | 33.52 ± 2.44 a,A | 25.82 ± 2.09 a,A | 25.98 ± 1.81 a,A | 37.27 ± 3.09 b,A | 29.77 ± 1.65 b,A | 29.42 ± 1.46 b,A | 37.46 ± 2.08 b,A | 29.68 ± 1.65 b,A | 29.48 ± 1.53 b,A |
50 | 26.56 ± 1.94 a,B | 22.99 ± 1.86 a,A | 23.63 ± 1.65 a,A | 34.26 ± 2.92 b,A | 26.63 ± 1.48 b,A | 27.02 ± 1.34 b,A | 35.21 ± 1.95 b,A | 28.63 ± 1.59 b,A | 27.96 ± 1.4 b,A |
70 | 23.63 ± 1.72 a,B | 18.2 ± 1.47 a,B | 18.63 ± 1.30 a,B | 33.03 ± 3.85 b,A | 25.69 ± 1.99 b,A | 25.88 ± 1.29 b,A | 34.96 ± 1.94 b,A | 26.98 ± 1.50 b,A | 27.36 ± 1.42 b,A |
p-value | 0.036 | 0.033 | 0.043 | 0.096 | 0.113 | 0.148 | 0.253 | 0.216 | 0.163 |
Cortex Bone Mineral Density (CBMD; mg/cm3) | |||||||||
C | W1 | W2 | |||||||
Week | Proximal | Middle | Distal | Proximal | Middle | Distal | Proximal | Middle | Distal |
20 | 1352 ± 33.69 a,A | 2106 ± 32.69 a,A | 1790 ± 26.63 a,A | 1291 ±26.52 a,A | 2186 ± 31.89 a,A | 1803 ± 29.88 a,A | 1302 ± 35.85 a,A | 2099 ± 36.65 a,A | 1764 ± 29.96 a,A |
30 | 814 ± 23.26 a,B | 1094 ± 16.85 a,B | 996 ± 21.35 a,B | 1152 ± 20.89 b,B | 1956 ± 17.89 b,B | 1535 ± 22.01 b,B | 1226 ± 21.03 b,B | 1864 ± 22.58 b,B | 1426 ± 19.57 b,B |
50 | 562 ± 48.15 a,C | 764 ± 35.29 a,C | 648 ± 41.63 a,C | 994 ± 54.05 b,C | 1759 ± 48.24 b,C | 1359 ± 58.44 b,C | 1012 ± 52.11 b,C | 1524 ± 55.38 b,C | 1202 ± 49.47 b,C |
70 | 342 ± 29.31 a,D | 470 ± 21.74 a,D | 438 ± 28.18 a,D | 795 ± 43.24 b,D | 1153 ± 31.62 b,D | 1000 ± 43.01 b,D | 807 ± 41.52 b,D | 1259 ± 45.75 b,D | 1044 ± 42.98 b,D |
p-value | 0.011 | 0.026 | 0.015 | 0.014 | 0.032 | 0.019 | 0.016 | 0.009 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, A.J.; Harrison, C.; Bragg, A.J.; House, G.M.; Stephan, A.B.; Arguelles-Ramos, M.; Ali, A. Effect of Interrupting the Daily Scotophase Period on Laying Hen Performance, Bone Health, Behavior, and Welfare; Part I: Bone Health. Poultry 2024, 3, 364-382. https://doi.org/10.3390/poultry3040028
Clark AJ, Harrison C, Bragg AJ, House GM, Stephan AB, Arguelles-Ramos M, Ali A. Effect of Interrupting the Daily Scotophase Period on Laying Hen Performance, Bone Health, Behavior, and Welfare; Part I: Bone Health. Poultry. 2024; 3(4):364-382. https://doi.org/10.3390/poultry3040028
Chicago/Turabian StyleClark, Alexis J., Cerano Harrison, Ari J. Bragg, Gabrielle M. House, Aaron B. Stephan, Mireille Arguelles-Ramos, and Ahmed Ali. 2024. "Effect of Interrupting the Daily Scotophase Period on Laying Hen Performance, Bone Health, Behavior, and Welfare; Part I: Bone Health" Poultry 3, no. 4: 364-382. https://doi.org/10.3390/poultry3040028
APA StyleClark, A. J., Harrison, C., Bragg, A. J., House, G. M., Stephan, A. B., Arguelles-Ramos, M., & Ali, A. (2024). Effect of Interrupting the Daily Scotophase Period on Laying Hen Performance, Bone Health, Behavior, and Welfare; Part I: Bone Health. Poultry, 3(4), 364-382. https://doi.org/10.3390/poultry3040028