Beam Transmission (BTR) Software for Efficient Neutral Beam Injector Design and Tokamak Operation
Abstract
:1. Introduction
- NBI purposes, general structure, and efficiency concerns are brought up in Section 2.
- BTR code basic features and GUI capabilities are represented in Section 3.
- BTR scope and methods are discussed in Section 4.
- Verification and validation (V&V) issues are considered in Section 5.
- The software applications in various NBI designs are illustrated in Section 6.
- The main conclusions and plans are manifested in the final Section 7.
2. NBI Purpose, Scheme and Structure
2.1. Neutral Injection Purpose
2.2. Neutral Injection Principles and Scheme
2.3. Neutral Beamline Losses and Efficiency
2.4. Neutral Beamline Geometry in BTR
- -
- the beam source grounded grid (GG),
- -
- multi-channel (can be single channel) neutralizer,
- -
- residual ion dump, RID (multi- or single channel),
- -
- neutral beam dump, or calorimeter,
- -
- beam transmission line, or duct, which consists of multiple modules (scrapers, FEC, liners, blanket sections, etc.).
3. BTR Basic Features and GUI
3.1. BTR General Info
3.2. BTR User Interface
- “Config plot”, main view with NBI geometry and beam layout.
- “Green panel” tool—BTR interactive input data processor.
- “Loads Summary”/“Map” view switch.
- “Running Status”/“Profiles” view switch.
- -
- Update/Save/Import data.
- -
- Call dialogs for input by categories (i.e., alternative direct input way).
- -
- Define specific ‘Tasks’ and output options.
- -
- Add/Edit gas or field input profiles.
- -
- Select/manage visualization categories and many others.
4. BTR Models and Tasks
4.1. Beam Shape and the Injected Power
4.2. Beam Neutralization
4.3. Residuals Deflection and Dumping
4.4. Re-Ionization on Gas
4.5. Penetration to Tokamak Plasma
4.6. Shine-Through Power at Tokamak Chamber Wall
5. BTR Verification
- Neutral particle tracks
- Charged particle motion in a magnetic field.
- Charged particle motion in an electric field.
- Charged particle motion in a combined field.
- Beamlet current simplified profile (2D Gaussian distribution)
- Beamlet current complex profile (core and halo fractions)
- Positive beam source ion neutralization (H+/D+)
- Negative beam source ion neutralization (H−/D−)
- Neutral particle ionization on gas target (beam ducts volume)
- Neutral particle ionization in plasma (tokamak volume)
- Neutral beam power/particle balance after the neutralizer
- Accelerated source beam power/particle balance without re-ionization losses
- Accelerated source beam power/particle full balance (all processes included)
- Cut-off current input parameter effect
- Magnetic field magnitude effect
- Angular misfocusing effects
- Atomic cross-sections and target density effects
- The effects of the geometry representation accuracy, meshing and time steps, etc.
6. BTR Applications
6.1. Beamline Transmission and Power Losses
6.2. Neutral Injection Port Optimization
6.3. Neutral Beam Shine-Through
6.4. Benchmark of Different Numerical Tools for NBI Simulation
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemsworth, R.S.; Boilson, D.; Blatchford, P.; Palma, M.D.; Chitarin, G.; de Esch, H.P.L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; et al. Overview of the design of the ITER heating neutral beam injectors. New J. Phys. 2017, 19, 025005. [Google Scholar] [CrossRef]
- Singh, M.J.; Boilson, D.; Hemsworth, R.S.; Geli, F.; Graceffa, J.; Urbani, M.; Dlougach, E.; Krylov, A.; Schunke, B.; Chareyre, J. Power loads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER. AIP Conf. Proc. 2015, 1655, 050011. [Google Scholar]
- Dlougach, E.D. BTR Code for Neutral Beam Design. Available online: https://sites.google.com/view/btr-code/home (accessed on 8 August 2022).
- Dlougach, E.D. BTR code for NBI Design and Optimization. AIP Conf. Proc. 2021, 2373, 080004. [Google Scholar]
- Dlougach, E.D.; Veltri, P. BTR code recent modifications for multi-run operation. AIP Conf. Proc. 2021, 2373, 080010. [Google Scholar]
- Oh, B.H.; Dlougach, E.D. Beam transport code for the KSTAR NB heating system. In Proceedings of the 20th IEEE/NPSS Symposium on Fusion Engineering, SOFE-03, San Diego, CA, USA, 14–17 October 2003; pp. 474–477. [Google Scholar]
- Bandyopadhyay, M.; Singh, M.J.; Singh, M.J.; Rotti, C.; Chakraborty, A.; Hemsworth, R.S.; Schunke, B. Beamline optimization for 100-keV diagnostic neutral beam injector for ITER. IEEE Trans. Plasma Sci. 2010, 38, 242–247. [Google Scholar] [CrossRef]
- Surrey, E.; Holmes, A.; McAdams, R.; King, D. Operation of the ITER Electrostatic Residual Ion Dump with a Perturbed Field. J. Fusion Energy 2010, 29, 486–498. [Google Scholar] [CrossRef]
- Chang, D.H.; Jeong, S.H.; Kim, T.-S.; Lee, K.W.; In, S.R.; Bae, Y.-S.; Kim, J.-S.; Park, H.-T.; Kim, D.-H.; Yang, H.-L. Performance of 300 s-beam extraction in the KSTAR neutral beam injector. Curr. Appl. Phys. 2012, 12, 1217–1222. [Google Scholar] [CrossRef]
- Veltri, P.; Agostinetti, P.; Palma, M.D.; Sartori, E.; Serianni, G. Evaluation of power loads on MITICA beamline components due to direct beam interception and electron backscattering. Fusion Eng. Des. 2013, 88, 1011–1014. [Google Scholar] [CrossRef]
- Sartori, E.; Veltri, P.; Dlougach, E.; Hemsworth, R.; Serianni, G.; Singh, M. Benchmark of numerical tools simulating beam propagation and secondary particles in ITER NBI. In NIBS-2014 AIP Conference Proceedings; AIP Publishing: College Park City, MA, USA, 2015; Volume 1655, p. 050006. [Google Scholar]
- McAdams, R. Beyond ITER: Neutral beams for a demonstration fusion reactor (DEMO). Rev. Sci. Instrum. 2014, 85, 02B319. [Google Scholar] [CrossRef]
- Sartori, E.; Veltri, P.; Serianni, G.; Palma, M.D.; Chitarin, G.; Sonato, P. Modeling of Beam Transport, Secondary Emission and Interactions with Beam-Line Components in the ITER Neutral Beam Injector. IEEE Trans. Plasma Sci. 2014, 42, 633–639. [Google Scholar] [CrossRef]
- McAdams, R.; Holmes, A.J.T.; King, D.B.; Surrey, E.; Turner, I.; Zacks, J. Negative ion research at the Culham Centre for Fusion Energy (CCFE) © EURATOM/CCFE. New J. Phys. 2016, 18, 125013. [Google Scholar] [CrossRef]
- Palma, M.D.; Pasqualotto, R.; Sartori, E.; Tinti, P.; Zaccaria, P.; Zaupa, M.; Krilov, A.; Panasenkov, A.; Blatchford, P.; Chuilon, B.; et al. The beamline for the ITER heating neutral beam injectors: A case study for development and procurement of high heat flux components. Fusion Eng. Des. 2021, 171, 112559. [Google Scholar] [CrossRef]
- Ananyev, S.S.; Dlougach, E.; Krylov, A.; Panasenkov, A.; Kuteev, B. Modeling and optimization of the neutral beam line for plasma heating and current drive for the DEMO-FNS fusion neutron source project. Fusion Eng. Des. 2020, 161, 112064. [Google Scholar] [CrossRef]
- Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; De Esch, H.; Geli, F.; Milnes, J.; et al. Status of the ITER heating neutral beam system. Nucl. Fusion 2009, 49, 045006. [Google Scholar] [CrossRef]
- ITER Final Design Report; NB H&CD, DDD 5.3; IAEA: Vienna, Austria, 2001.
- Available online: https://winworldpc.com/product/turbo-pascal/7x (accessed on 25 August 2023).
- Kuteev, B.V.; Goncharov, P.R.; Sergeev, V.Y.; Khripunov, V.I. Intense fusion neutron sources. Plasma Phys. Rep. 2010, 36, 281–317. [Google Scholar] [CrossRef]
- Kuteev, B.V.; Goncharov, P.R. Fusion–Fission Hybrid Systems: Yesterday, Today, and Tomorrow. Fusion Sci. Technol. 2020, 76, 836–847. [Google Scholar] [CrossRef]
- Kuteev, B.V.; Shpanskiy, Y.; Team, D.-F. Status of DEMO-FNS development. Nucl. Fusion 2017, 57, 076039. [Google Scholar] [CrossRef]
- Kuteev, B.V.; Azizov, E.; Bykov, A.; Dnestrovsky, A.; Dokuka, V.; Gladush, G.; Golikov, A.; Goncharov, P.; Gryaznevich, M.; Gurevich, M.; et al. Steady state operation in compact tokamaks with copper coils. Nucl. Fusion 2011, 51, 073013. [Google Scholar] [CrossRef]
- Chernyshev, F.V.; Afanasyev, V.I.; Gusev, V.K.; Ivanov, A.E.; Kurskiev, G.S.; Melnik, A.D.; Minaev, V.B.; Mironov, M.I.; Nesenevich, V.G.; Patrov, M.I.; et al. Study of fast-ion losses in experiments on neutral beam injection on the Globus-M spherical tokamak. Plasma Phys. Rep. 2011, 37, 553–571. [Google Scholar] [CrossRef]
- Heidbrink, W.W.; Van Zeeland, M.; Grierson, B.; Muscatello, C.; Park, J.; Petty, C.; Prater, R.; Zhu, Y. Initial measurements of the DIII-D off-axis neutral beams. Nucl. Fusion 2012, 52, 094005. [Google Scholar] [CrossRef]
- Hemsworth, R.S. Long pulse neutral beam injection. Nucl. Fusion 2003, 43, 851–861. [Google Scholar] [CrossRef]
- Hopf, C.; Starnella, G.; Harder, N.D.; Fantz, U. Neutral beam injection for fusion reactors: Technological constraints versus functional requirements. Nucl. Fusion 2021, 61, 106032. [Google Scholar] [CrossRef]
- Khvostenko, P.P.; Anashkin, I.; Bondarchuk, E.; Injutin, N.; Khvostenko, A.; Kochin, V.; Kuzmin, E.; Levin, I.; Lutchenko, A.; Modyaev, A.; et al. Tokamak T-15MD—Two years before the physical start-up. Fusion Eng. Design. 2019, 146, 1108–1112. [Google Scholar] [CrossRef]
- Dlougach, E.D.; Panasenkov, A.; Kuteev, B.; Serikov, A. Neutral beam coupling with plasma in a compact fusion neutron source. Appl. Sci. 2022, 12, 8404. [Google Scholar] [CrossRef]
- Karpushov, A.N.; Bagnato, F.; Baquero-Ruiz, M.; Coda, S.; Colandrea, C.; Dolizy, F.; Dubray, J.; Duval, B.P.; Fasel, D.; Fasoli, A.; et al. Upgrade of the neutral beam heating system on the TCV tokamak—Second high energy neutral beam. Fusion Eng. Des. 2023, 187, 113384. [Google Scholar] [CrossRef]
- Jaulmes, F.; Zadvitskiy, G.; Bogar, K.; Mysiura, I.; Varju, J.; Jeřáb, M.; Komm, M.; Imrisek, M. Numerical modelling for beam duct heat loads calculations and application to the new 1 MW neutral beam injector in the COMPASS tokamak. Plasma Phys. Control. Fusion 2022, 64, 125001. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Davydenko, V.I.; Belchenko, Y.I. Negative ion and neutral beams injectors at the Budker Institute of nuclear physics. AIP Conf. Proc. 2018, 2052, 030003. [Google Scholar]
- Oikawa, T.; Park, J.M.; Polevoi, A.R.; Schneider, M.; Giruzzi, G.; Murakami, M.; Tani, K.; Sips, A.C.C.; Kessel, C.; Houlberg, W.; et al. Benchmarking of neutral beam current drive codes as a basis for the integrated modeling for ITER. In Proceedings of the 22nd International Conference on Fusion Energy, (Vienna, IAEA, 2008), Geneva, Switzerland, 13–18 October 2008. [Google Scholar]
- Dlougach, E.D. BTR Application for Beam Slowing-down Analysis. AIP Conf. Proc. 2021, 2373, 080009. [Google Scholar]
- Pankin, A.; McCune, D.; Andre, R.; Bateman, G.; Kritz, A. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library. Comput. Phys. Commun. 2004, 159, 157–184. [Google Scholar] [CrossRef]
- Janev, R.K.; Boley, C.; Post, D. Penetration of energetic neutral beams into fusion plasmas. Nucl. Fusion 1989, 29, 2125. [Google Scholar] [CrossRef]
- Available online: http://btr.org.ru (accessed on 28 October 2020).
- Harder, N.; Orozco, G.; Zammuto, I.; Hopf, C. Modeling neutral beam transport in fusion experiments: Studying the effects of reionisation and deflection. Fusion Eng. Des. 2019, 146, 518–521. [Google Scholar] [CrossRef]
- Imbeaux, F.; Pinches, S.; Lister, J.; Buravand, Y.; Casper, T.; Duval, B.; Guillerminet, B.; Hosokawa, M.; Houlberg, W.; Huynh, P.; et al. Design and first applications of the ITER integrated modelling & analysis suite. Nucl. Fusion 2015, 55, 123006. [Google Scholar]
- Romanelli, M.; Corrigan, G.; Parail, V.; Wiesen, S.; Ambrosino, R.; Belo, P.D.S.A.; Garzotti, L.; Harting, D.; Köchl, F.; Koskela, T.; et al. JINTRAC: A system of codes for integrated simulation of tokamak scenarios. Plasma Fusion Res. 2014, 9, 3403023. [Google Scholar] [CrossRef]
- Romanelli, M.; Coelho, R.; Coster, D.; Ferreira, J.; Fleury, L.; Henderson, S.; Hollocombe, J.; Imbeaux, F.; Jonsson, T.; Kogan, L.; et al. Code integration, data verification, and models validation using the ITER integrated modeling and analysis system (IMAS) in EUROfusion. Fusion Sci. Technol. 2020, 76, 894. [Google Scholar] [CrossRef]
- Lee, C.Y.; Seo, J.; Park, S.; Lee, J.; Kim, S.; Kim, B.; Byun, C.; Lee, Y.; Gwak, J.; Kang, J.; et al. Development of integrated suite of codes and its validation on KSTAR. Nucl. Fusion 2021, 61, 096020. [Google Scholar] [CrossRef]
- Kwon, J.M.; Choi, H.; Ki, J.; Park, S.H.; Kim, Y.J.; Cho, H.; Kim, S.; Chae, H.S.; Lee, K.-S.; Woo, M.; et al. Development of a Virtual Tokamak platform. Fusion Eng. Des. 2022, 184, 113281. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlougach, E.; Kichik, M. Beam Transmission (BTR) Software for Efficient Neutral Beam Injector Design and Tokamak Operation. Software 2023, 2, 476-503. https://doi.org/10.3390/software2040022
Dlougach E, Kichik M. Beam Transmission (BTR) Software for Efficient Neutral Beam Injector Design and Tokamak Operation. Software. 2023; 2(4):476-503. https://doi.org/10.3390/software2040022
Chicago/Turabian StyleDlougach, Eugenia, and Margarita Kichik. 2023. "Beam Transmission (BTR) Software for Efficient Neutral Beam Injector Design and Tokamak Operation" Software 2, no. 4: 476-503. https://doi.org/10.3390/software2040022