Treatment of Sexually Transmitted Infections (STIs) Caused by Neisseria gonorrhoeae and the Global Shortage of Antibiotics
Abstract
:1. Introduction
Clinical Presentation of Gonorrhoea
2. Treatment of Gonorrhoea
2.1. Current Treatment Options for Multidrug-Resistant N. gonorrhoeae
2.2. Development of New Therapies against N. gonorrhoeae
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Gerbase, A.C.; Rowley, J.T.; Mertens, T.E. Global Epidemiology of Sexually Transmitted Diseases. Lancet 1998, 351, S2–S4. [Google Scholar] [CrossRef]
- Nguyen, S.H.; Dang, A.K.; Vu, G.T.; Nguyen, C.T.; Le, T.H.T.; Truong, N.T.; Hoang, C.L.; Tran, T.T.; Tran, T.H.; Pham, H.Q.; et al. Lack of Knowledge about Sexually Transmitted Diseases (STDs): Implications for STDs Prevention and Care among Dermatology Patients in an Urban City in Vietnam. Int. J. Environ. Res. Public Health 2019, 16, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Sexually Transmitted Infections (STIs). Available online: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis) (accessed on 23 June 2022).
- Belda, W.; Shiratsu, R.; Pinto, V. Approach in Sexually Transmitted Diseases. An. Bras. Dermatol. 2009, 84, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, A.A.F.L.N.; Matos, M.C.B.; Araújo, T.M.E.; Reis, R.K.; Sousa, Á.F.L. Infecções Sexualmente Transmissíveis e Fatores Associados Ao Uso Do Preservativo Em Usuários de Aplicativos de Encontro No Brasil. Acta Paul. Enferm. 2019, 32, 546–553. [Google Scholar] [CrossRef]
- Abraha, M.; Egli-Gany, D.; Low, N. Epidemiological, Behavioural, and Clinical Factors Associated with Antimicrobial-Resistant Gonorrhoea: A Review. F1000Research 2018, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Kirkcaldy, R.D.; Weston, E.; Segurado, A.C.; Hughes, G. Epidemiology of Gonorrhea: A Global Perspective. Sex. Health 2019, 16, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Budkaew, J.; Chumworathayi, B.; Pientong, C.; Ekalaksananan, T. Prevalence and Factors Associated with Gonorrhea Infection with Respect to Anatomic Distributions among Men Who Have Sex with Men. PLoS ONE 2019, 14, e0211682. [Google Scholar] [CrossRef] [Green Version]
- Aslam, A.; Zin, C.S.; Ab Rahman, N.S.; Gajdács, M.; Ahmed, S.I.; Jamshed, S. Self-Medication Practices with Antibiotics and Associated Factors among the Public of Malaysia: A Cross-Sectional Study. Drug. Healthc. Patient Saf. 2021, 13, 171–181. [Google Scholar] [CrossRef]
- Anderson, K. Self-Medication by Patients Attending a Venereal Diseases Clinic. Br. J. Vener. Dis. 1966, 42, 44–45. [Google Scholar] [CrossRef] [Green Version]
- Ferreyra, C.; Redard-Jacot, M.; Wi, T.; Daily, J.; Kelly-Cirino, C. Barriers to Access to New Gonorrhea Point-of-Care Diagnostic Tests in Low- and Middle-Income Countries and Potential Solutions: A Qualitative Interview-Based Study. Sex. Transm. Dis. 2020, 47, 698–704. [Google Scholar] [CrossRef]
- Morris, J.L.; Lippman, S.A.; Philip, S.; Bernstein, K.; Neilands, T.B.; Lightfoot, M. Sexually Transmitted Infection Related Stigma and Shame among African American Male Youth: Implications for Testing Practices, Partner Notification, and Treatment. AIDS Patient Care STDS 2014, 28, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quillin, S.J.; Seifert, H.S. Neisseria gonorrhoeae Host-Adaptation and Pathogenesis. Nat. Rev. Microbiol. 2018, 16, 226–240. [Google Scholar] [CrossRef]
- Bignell, C.; Unemo, M. 2012 European Guideline on the Diagnosis and Treatment of Gonorrhoea in Adults. Int. J. STD AIDS 2013, 24, 85–92. [Google Scholar] [CrossRef]
- de Lannoy, L.H.; Silva, R.J.d.C.d.; Júnior, E.P.N.; de Oliveira, E.C.; Gaspar, P.C. Brazilian Protocol for Sexually Transmitted Infections, 2020: Infections That Cause Urethral Discharge. Rev. Soc. Bras. Med. Trop. 2021, 54, e2020633. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, C.; Schwarz, N.G.; Frickmann, H. Sexually Transmitted Infections in Soldiers–a Cross-Sectional Assessment in German Paratroopers and Navy Soldiers and a Literature Review. Eur. J. Microbiol. Immunol. 2019, 9, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually Transmitted Infections Treatment Guidelines,2021. MMWR Recomm. Rep. 2021, 70, 1–187. [Google Scholar] [CrossRef]
- Darville, T. Pelvic Inflammatory Disease Due to Neisseria gonorrhoeae and Chlamydia Trachomatis: Immune Evasion Mechanisms and Pathogenic Disease Pathways. J. Infect. Dis. 2021, 224, S39–S46. [Google Scholar] [CrossRef]
- Barberá, M.J.; Serra-Pladevall, J. Gonococcal Infection: An Unresolved Problem. Enferm. Infecc. Microbiol. Clínica Engl. Ed. 2019, 37, 458–466. [Google Scholar] [CrossRef]
- Salmerón, P.; Viñado, B.; El Ouazzani, R.; Hernández, M.; Barbera, M.J.; Alberny, M.; Jané, M.; Larrosa, N.; Pumarola, T.; Hoyos-Mallecot, Y.; et al. Antimicrobial Susceptibility of Neisseria gonorrhoeae in Barcelona during a Five-Year Period, 2013 to 2017. Eurosurveillance 2020, 25, 1900576. [Google Scholar] [CrossRef]
- Młynarczyk-Bonikowska, B.; Majewska, A.; Malejczyk, M.; Młynarczyk, G.; Majewski, S. Multiresistant Neisseria gonorrhoeae: A New Threat in Second Decade of the XXI Century. Med. Microbiol. Immunol. 2020, 209, 95–108. [Google Scholar] [CrossRef]
- Fernàndez-López, L.; Reyes-Urueña, J.; Conway, A.; Saz, J.; Morales, A.; Quezadas, J.; Baroja, J.; Rafel, A.; Pazos, A.; Avellaneda, A.; et al. Antimicrobial Resistance Point-of-Care Testing for Gonorrhoea Treatment Regimens: Cost-Effectiveness and Impact on Ceftriaxone Use of Five Hypothetical Strategies Compared with Standard Care in England Sexual Health Clinics. Eurosurveillance 2020, 25, e1900402. [Google Scholar] [CrossRef]
- Yang, F.; Yan, J. Antibiotic Resistance and Treatment Options for Multidrug-Resistant Gonorrhea. Infect. Microbes Dis. 2020, 2, 67–76. [Google Scholar] [CrossRef]
- Tapsall, J. Current Concepts in the Management of Gonorrhoea. Expert Opin. Pharmacother. 2002, 3, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Seifert, H.S.; Hook, E.W.; Hawkes, S.; Ndowa, F.; Dillon, J.A.R. Gonorrhoea. Nat. Rev. Dis. Prim. 2019, 5, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Weston, E.J.; Wi, T.; Papp, J. Strengthening Global Surveillance for Antimicrobial Drug–Resistant Neisseria gonorrhoeae through the Enhanced Gonococcal Antimicrobial Surveillance Program. Emerg. Infect. Dis. 2017, 23, S52. [Google Scholar] [CrossRef]
- Stover, J.A.; Kheirallah, K.A.; Delcher, P.C.; Dolan, C.B.; Johnson, L. Improving Surveillance of Sexually Transmitted Diseases through Geocoded Morbidity Assignment. Public Health Rep. 2009, 124, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Yaesoubi, R.; Cohen, T.; Hsu, K.; Gift, T.L.; Cyr, S.B.S.; Salomon, J.A.; Grad, Y.H. Evaluating Spatially Adaptive Guidelines for the Treatment of Gonorrhea to Reduce the Incidence of Gonococcal Infection and Increase the Effective Lifespan of Antibiotics. PLoS Comput. Biol. 2022, 18, e1009842. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for the Treatment of Neisseria gonorrhoeae; World Health Organisation: Genebra, Switzerland, 2016. [Google Scholar]
- Unemo, M.; Golparian, D.; Eyre, D.W. Antimicrobial Resistance in Neisseria Gonorrhoeae and Treatment of Gonorrhea. Methods Mol. Biol. 2019, 1997, 37–58. [Google Scholar] [CrossRef]
- Eyre, D.W.; Sanderson, N.D.; Lord, E.; Regisford-Reimmer, N.; Chau, K.; Barker, L.; Morgan, M.; Newnham, R.; Golparian, D.; Unemo, M.; et al. Gonorrhoea Treatment Failure Caused by a Neisseria gonorrhoeae Strain with Combined Ceftriaxone and High-Level Azithromycin Resistance, England, February 2018. Euro Surveill. 2018, 23, 1800323. [Google Scholar] [CrossRef] [Green Version]
- Machado, H.D.M.; Martins, J.M.; Schörner, M.A.; Gaspar, P.C.; Bigolin, A.; Ramos, M.C.; Ferreira, W.A.; Pereira, G.F.M.; Miranda, A.E.; Unemo, M.; et al. National Surveillance of Neisseria gonorrhoeae Antimicrobial Susceptibility and Epidemiological Data of Gonorrhoea Patients across Brazil, 2018–2020. JAC-Antimicrob. Resist. 2022, 4, dlac076. [Google Scholar] [CrossRef]
- Unemo, M.; Workowski, K. Dual Antimicrobial Therapy for Gonorrhoea: What Is the Role of Azithromycin? Lancet. Infect. Dis. 2018, 18, 486–488. [Google Scholar] [CrossRef]
- Willie, B.; Sweeney, E.L.; Badman, S.G.; Chatfield, M.; Vallely, A.J.; Kelly-Hanku, A.; Whiley, D.M. The Prevalence of Antimicrobial Resistant Neisseria gonorrhoeae in Papua New Guinea: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1520. [Google Scholar] [CrossRef] [PubMed]
- St. Cyr, S.; Barbee, L.; Workowski, K.A.; Bachmann, L.H.; Pham, C.; Schlanger, K.; Torrone, E.; Weinstock, H.; Kersh, E.N.; Thorpe, P. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1911–1916. [Google Scholar] [CrossRef]
- Brazil, M.d.S. Protocolo Clínico e Diretrizes Terapêuticas Para Atenção Integral Às Pessoas Com Infecções Sexualmente Transmissíveis (ISTs); Ministério da Saúde Publisher: Brasilia, Brasil, 2021; pp. 1–215. [Google Scholar]
- Jamison, C.D.; Coleman, J.S.; Mmeje, O. Improving Women’s Health and Combatting Sexually Transmitted Infections Through Expedited Partner Therapy. Obstet. Gynecol. 2019, 133, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Gift, T.L.; Kissinger, P.; Mohammed, H.; Leichliter, J.S.; Hogben, M.; Golden, M.R. The Cost and Cost-Effectiveness of Expedited Partner Therapy Compared with Standard Partner Referral for the Treatment of Chlamydia or Gonorrhea. Sex. Transm. Dis. 2011, 38, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Teutsch, S.M.; Haddix, A.C. Lessons from Cost-Effectiveness Research for United States Public Health Policy. Annu. Rev. Public Health 2007, 28, 365–391. [Google Scholar] [CrossRef]
- Baggio, D.; Ananda-Rajah, M.R. Fluoroquinolone Antibiotics and Adverse Events. Aust. Prescr. 2021, 44, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.D.C.; Brittain, C.; Cole, M.; Dewsnap, C.; Harding, J.; Hepburn, T.; Jackson, L.; Keogh, M.; Lawrence, T.; Montgomery, A.A.; et al. Gentamicin Compared with Ceftriaxone for the Treatment of Gonorrhoea (G-ToG): A Randomised Non-Inferiority Trial. Lancet 2019, 393, 2511–2520. [Google Scholar] [CrossRef] [Green Version]
- Kahlmeter, G.; Dahlager, J.I. Aminoglycoside Toxicity-a Review of Clinical Studies Published between 1975 and 1982. J. Antimicrob. Chemother. 1984, 13 (Suppl. A), 9–22. [Google Scholar] [CrossRef]
- Unemo, M.; Shafer, W.M. Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef]
- Kampmeier, R.H. Introduction of Sulfonamide Therapy for Gonorrhea. Sex. Transm. Dis. 1983, 10, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.K.; Wu, Y.; Li, Z.; Zhao, Y.; Waddell, M.B.; Ferreira, A.M.; Lee, R.E.; Bashford, D.; White, S.W. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase: Crystal Structures Reveal the Catalytic Mechanism of DHPS and the Structural Basis of Sulfa Drug Action and Resistance. Science 2012, 335, 1110–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, J.F.; Ferguson, C.; Buchholtz, M.; Van Slyke, C.J. The Use of Penicillin Sodium in the Treatment of Sulfonamide. Resistant Gonorrhoea in Men. A Preliminary Report. Am. J. Syph. 1943, 27, 525–528. [Google Scholar]
- Van Slyke, C.J.; Arnold, R.C.; Buchholtz, M. Penicillin Therapy in Sulfonamide-Resistant Gonorrhea in Men. Am. J. Public Health Nations. Health 1943, 33, 1392–1394. [Google Scholar] [CrossRef] [Green Version]
- Phillips, I. Beta-Lactamase-Producing, Penicillin-Resistant Gonococcus. Lancet 1976, 2, 656–657. [Google Scholar] [CrossRef]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-Binding Proteins and Beta-Lactam Resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef] [Green Version]
- Warner, D.M.; Folster, J.P.; Shafer, W.M.; Jerse, A.E. Regulation of the MtrC-MtrD-MtrE Efflux-Pump System Modulates the in Vivo Fitness of Neisseria gonorrhoeae. J. Infect. Dis. 2007, 196, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Helm, R.A.; Barnhart, M.M.; Seifert, H.S. PilQ Missense Mutations Have Diverse Effects on PilQ Multimer Formation, Piliation, and Pilus Function in Neisseria gonorrhoeae. J. Bacteriol. 2007, 189, 3198–3207. [Google Scholar] [CrossRef] [Green Version]
- Egli, K.; Roditscheff, A.; Flückiger, U.; Risch, M.; Risch, L.; Bodmer, T. Molecular Characterization of a Ceftriaxone-Resistant Neisseria gonorrhoeae Strain Found in Switzerland: A Case Report. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 1–4. [Google Scholar] [CrossRef]
- Rostamian, M.; Chegene Lorestani, R.; Jafari, S.; Mansouri, R.; Rezaeian, S.; Ghadiri, K.; Akya, A. A Systematic Review and Meta-Analysis on the Antibiotic Resistance of Neisseria Meningitidis in the Last 20 Years in the World. Indian J. Med. Microbiol. 2022, 40, 323–329. [Google Scholar] [CrossRef]
- Reyn, A.; Korner, B.; Bentzon, M.W. Effects of Penicillin, Streptomycin, and Tetracycline on N. gonorrhoeae Isolated in 1944 and in 1957. Br. J. Vener. Dis. 1958, 34, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Costa-Lourenço, A.P.R.; dos Santos, K.T.B.; Moreira, B.M.; Fracalanzza, S.E.L.; Bonelli, R.R. Antimicrobial Resistance in Neisseria Gonorrhoeae: History, Molecular Mechanisms and Epidemiological Aspects of an Emerging Global Threat. Brazilian J. Microbiol. 2017, 48, 617–628. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. DNA Gyrase, Topoisomerase IV, and the 4-Quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, G.A. Mechanisms of Resistance to Quinolones. Clin. Infect. Dis. 2005, 41 (Suppl. 2), S120–S126. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.A. Global Resistance of Neisseria Gonorrhoeae: When Theory Becomes Reality. Curr. Opin. Infect. Dis. 2014, 27, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Pérez-Gracia, M.T. Future Prospects for Neisseria gonorrhoeae Treatment. Antibiotics 2018, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Dutescu, I.A.; Hillie, S.A. Encouraging the Development of New Antibiotics: Are Financial Incentives the Right Way Forward? A Systematic Review and Case Study. Infect. Drug Resist. 2021, 14, 415–434. [Google Scholar] [CrossRef]
- Fifer, H.; Saunders, J.; Soni, S.; Sadiq, S.T.; FitzGerald, M. 2018 UK National Guideline for the Management of Infection with Neisseria gonorrhoeae. Int. J. STD AIDS 2020, 31, 4–15. [Google Scholar] [CrossRef]
- Martins, J.M.; Scheffer, M.C.; Machado, H.D.M.; Schörner, M.A.; Golfetto, L.; dos Santos, T.M.; Barazzetti, F.H.; de Albuquerque, V.C.B.; Bazzo, M.L. Spectinomycin, Gentamicin, and Routine Disc Diffusion Testing: An Alternative for the Treatment and Monitoring of Multidrug-Resistant Neisseria gonorrhoeae? J. Microbiol. Methods 2022, 197, 106480. [Google Scholar] [CrossRef]
- Li, X.; Le, W.; Lou, X.; Wang, B.; Genco, C.A.; Rice, P.A.; Su, X. In Vitro Efficacy of Gentamicin Alone and in Combination with Ceftriaxone, Ertapenem, and Azithromycin against Multidrug-Resistant Neisseria gonorrhoeae. Microbiol. Spectr. 2021, 9, e00181211. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Le, W.; Lou, X.; Genco, C.A.; Rice, P.A.; Su, X. In Vitro Activity of Ertapenem against Neisseria gonorrhoeae Clinical Isolates with Decreased Susceptibility or Resistance to Extended-Spectrum Cephalosporins in Nanjing, China (2013 to 2019). Antimicrob. Agents Chemother. 2022, 66, e0010922. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Bornman, C.; Zafer, M.M. Antimicrobial Resistance Threats in the Emerging COVID-19 Pandemic: Where Do We Stand? J. Infect. Public Health 2021, 14, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Abdelmalek, S.M.A.; Mousa, A. Azithromycin Misuse during the COVID-19 Pandemic: A Cross-Sectional Study from Jordan. Infect. Drug Resist. 2022, 15, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Freires, M.S.; Junior, O.M.R. Bacterial Resistance to Indiscriminate Use of Azithromycin versus COVID-19: An Integrative Review. Res. Soc. Dev. 2022, 11, e31611125035. [Google Scholar] [CrossRef]
- Derbie, A.; Mekonnen, D.; Woldeamanuel, Y.; Abebe, T. Azithromycin Resistant Gonococci: A Literature Review. Antimicrob. Resist. Infect. Control 2020, 9, 138. [Google Scholar] [CrossRef]
- Yakobi, S.H.; Pooe, O.J.; Yakobi, S.H.; Pooe, O.J. Antimicrobial Resistance of Neisseria gonorrhoeae in Sub-Saharan Populations. Bacteria 2022, 1, 96–111. [Google Scholar] [CrossRef]
- Unemo, M. Current and Future Antimicrobial Treatment of Gonorrhoea0-the Rapidly Evolving Neisseria gonorrhoeae Continues to Challenge. BMC Infect. Dis. 2015, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, O.; Gottwald, M.; Schüler, P.; Michel, M.C. Opportunities and Challenges for Drug Development: Public–Private Partnerships, Adaptive Designs and Big Data. Front. Pharmacol. 2016, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, S.; Van Bambeke, F.; Tulkens, P.M. Cellular Accumulation and Pharmacodynamic Evaluation of the Intracellular Activity of Cem-101, a Novel Fluoroketolide, against Staphylococcus Aureus, Listeria Monocytogenes, and Legionella Pneumophila in Human Thp-1 Macrophages. Antimicrob. Agents Chemother. 2009, 53, 3734–3743. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Craft, J.C. Phase 3 Trial of Treating Gonorrhoea with Solithromycin. Lancet Infect. Dis. 2019, 19, 928. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Scangarella-Oman, N.; Unemo, M. In Vitro Activity of the Novel Triazaacenaphthylene Gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2018, 73, 2072–2077. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.A.; Miller, A.A.; O’Donnell, J.; Mueller, J.P. Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria Gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect. Dis. 2020, 6, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
Therapeutic Scheme in a Single Dose | ||||||
---|---|---|---|---|---|---|
WHO | Brazil | CDC EUA | UK | |||
Uncomplicated gonococcal infection of the cervix, urethra, or rectum | Ceftriaxone 250 mg intramuscular (IM) + Azithromycin 1 g orally OR Cefixime 400 mg orally + Azithromycin 1 g orally If recent local resistance data confirming susceptibility to the antimicrobial: Ceftriaxone 250 mg IM OR Cefixime 400 mg orally OR Spectinomycin 2 g IM | Ceftriaxone 500 mg IM + Azithromycin 1 g orally *** | Ceftriaxone 500 mg IM for persons weighing <150 kg * OR Ceftriaxone 1 g IM for persons weighing ≥150 kg * | Alternative Regimens: Gentamicin 240 mg IM + Azithromycin 2 g orally If ceftriaxone administration is not available or not feasible: Cefixime 800 mg orally * | Ceftriaxone 1 g IM **** OR Ciprofloxacin 500 mg orally ***** | Alternative Regimens ****** Cefixime 400 mg orally + Azithromycin 2 g orally OR Gentamicin 240 mg IM + Azithromycin 2 g orally OR Spectinomycin 2 g + Azithromycin 2 g orally |
Uncomplicated gonococcal infection of the pharynx | Ceftriaxone 250 mg IM + Azithromycin 1 g orally OR Cefixime 400 mg orally + Azithromycin 1 g orally If recent local resistance data confirming susceptibility to the antimicrobial: Ceftriaxone 250 mg IM | Ceftriaxone 500 mg IM + Azithromycin 1 g orally *** | Ceftriaxone 500 mg IM for persons weighing <150 kg ** OR Ceftriaxone 1 g IM for persons weighing ≥150 kg ** | Ceftriaxone 1 g IM **** OR Ciprofloxacin 500 mg orally ***** | Cefixime 400 mg orally + Azithromycin 2 g orally OR Gentamicin 240 mg IM + Azithromycin 2 g orally |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, J.L.R.; Pinto, E.M.H.; Oliveira, S.A.; Gomes, F.A.C.; Silva, O.N. Treatment of Sexually Transmitted Infections (STIs) Caused by Neisseria gonorrhoeae and the Global Shortage of Antibiotics. Venereology 2022, 1, 235-244. https://doi.org/10.3390/venereology1030017
Martins JLR, Pinto EMH, Oliveira SA, Gomes FAC, Silva ON. Treatment of Sexually Transmitted Infections (STIs) Caused by Neisseria gonorrhoeae and the Global Shortage of Antibiotics. Venereology. 2022; 1(3):235-244. https://doi.org/10.3390/venereology1030017
Chicago/Turabian StyleMartins, José Luis Rodrigues, Emerith Mayra Hungria Pinto, Salomão Antonio Oliveira, Fernanda Almeida Costa Gomes, and Osmar Nascimento Silva. 2022. "Treatment of Sexually Transmitted Infections (STIs) Caused by Neisseria gonorrhoeae and the Global Shortage of Antibiotics" Venereology 1, no. 3: 235-244. https://doi.org/10.3390/venereology1030017
APA StyleMartins, J. L. R., Pinto, E. M. H., Oliveira, S. A., Gomes, F. A. C., & Silva, O. N. (2022). Treatment of Sexually Transmitted Infections (STIs) Caused by Neisseria gonorrhoeae and the Global Shortage of Antibiotics. Venereology, 1(3), 235-244. https://doi.org/10.3390/venereology1030017