Hemophilic Arthropathy—Pathophysiology and Advances in Treatment
Abstract
:1. Introduction
2. Epidemiology
3. Causes
3.1. Genetic Factors
3.2. Local Factors
3.3. Environmental Factors
4. Coagulation Cascade
Development of Inhibitors Against Coagulation Factors
5. Pathophysiology
5.1. Interleukin 1
5.2. Factor Tumor Necrosis α (TNFα)
5.3. Hemophilic Arthropathy—Clinical Presentation
6. Diagnostics
6.1. X-Ray
6.2. Ultrasound
6.3. Magnetic Resonance Imaging
6.4. Laboratory Findings
6.5. Biomarkers
6.6. Prophylaxis
- Episodic prophylaxis
- 2.
- Continuous prophylaxis
- Primary—received before the age of 3 and before the second major bleeding in the joint (hemarthrosis).
- Secondary—received after two or more episodes of hemarthrosis and before the development of hemophilic arthropathy.
- Tertiary—received after hemophilic arthropathy is already developed with an idea of stopping further progression of the disease.
- 3.
- Intermittent prophylaxis
7. Treatment
7.1. Conservative Treatment
7.1.1. The RICE Protocol
7.1.2. Intermittent Prophylaxis
7.1.3. Nonsteroidal Drugs
7.1.4. Desmopressin
7.2. Replacement Therapy for Coagulation Factors
7.2.1. Plasma-Derived Factor VIII Concentrates
7.2.2. Recombinant Human Factor VIII
7.2.3. Extended Half-Life Recombinant Factor VIII
Efanesoctocog Alfa
Fusion Factor VIII-Fc
PEGylated Factor VIII
7.2.4. Plasma-Derived Factor IX Derivatives
7.2.5. Recombinant Factor IX
7.2.6. Extended Half-Life Recombinant Factor IX
7.3. New Medications
7.3.1. Emicizumab
7.3.2. Genetic Therapy
8. Invasive Treatment
8.1. Arthrocentesis
8.2. Synovectomy
8.2.1. Radiosynovectomy
8.2.2. Chemical Synovectomy
8.2.3. Surgical Synovectomy
8.3. Joint Replacement
9. Rehabilitation
10. Prognosis
11. Discussion
12. Conclusions
Funding
Conflicts of Interest
References
- Hassan, S.; Monahan, R.C.; Mauser-Bunschoten, E.P.; Van Vulpen, L.F.D.; Eikenboom, J.; Beckers, E.A.M.; Hooimeijer, L.; Ypma, P.F.; Nieuwenhuizen, L.; Coppens, M.; et al. Mortality, life expectancy, and causes of death of persons with hemophilia in the Netherlands 2001–2018. J. Thromb. Haemost. 2021, 19, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, I.; Iannuzzo, G.; Dell’Aquila, F.; Di Minno, M.N.D. Pathophysiological Role of Synovitis in Hemophilic Arthropathy Development: A Two-Hit Hypothesis. Front. Physiol. 2020, 11, 541. [Google Scholar] [CrossRef]
- Peyvandi, F.; Garagiola, I.; Young, G. The past and future of haemophilia: Diagnosis, treatments, and its complications. Lancet 2016, 388, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Berntorp, E.; Fischer, K.; Hart, D.P.; Mancuso, M.E.; Stephensen, D.; Shapiro, A.D.; Blanchette, V. Haemophilia. Nat. Rev. Dis. Primers 2021, 7, 45. [Google Scholar] [CrossRef]
- Shapiro, S.; Makris, M. Haemophilia and ageing. Br. J. Haematol. 2019, 184, 712–720. [Google Scholar] [CrossRef]
- Gualtierotti, R.; Solimeno, L.P.; Peyvandi, F. Hemophilic arthropathy: Current knowledge and future perspectives. J. Thromb. Haemost. 2021, 19, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; McMillan, C.W.; White, G.C.; Bergman, G.E.; Horton, M.W.; Saidi, P. Purified factor IX using monoclonal immunoaffinity technique: Clinical trials in hemophilia B and comparison to prothrombin complex concentrates. Blood 1992, 79, 568–575. [Google Scholar] [CrossRef]
- Guyton, C.; Jehn, E.; Hall, J. Textbook of Medical Physiology, 13th ed.; Medicinska Naklada: Zagreb, Croatia, 2017. [Google Scholar]
- Peyvandi, F.; Ettingshausen, C.E.; Goudemand, J.; Jiménez-Yuste, V.; Santagostino, E.; Makris, M. New findings on inhibitor development: From registries to clinical studies. Haemophilia 2017, 23, 4–13. [Google Scholar] [CrossRef]
- Prescott, R.; Nakai, H.; Saenko, E.L.; Scharrer, I.; Nilsson, I.M.; Humphries, J.E.; Hurst, D.; Bray, G.; Scandella, D.; the Recombinate and Kogenate Study Groups. The inhibitor antibody response is more complex in hemophilia A patients than in most nonhemophiliacs with factor VIII autoantibodies. Recombinate and Kogenate Study Groups. Blood 1997, 89, 3663–3671. [Google Scholar] [CrossRef]
- Zhong, D.; Saenko, E.L.; Shima, M.; Felch, M.; Scandella, D. Some human inhibitor antibodies interfere with factor VIII binding to factor IX. Blood 1998, 92, 136–142. [Google Scholar] [CrossRef]
- Lacroix-Desmazes, S.; Bayry, J.; Misra, N.; Horn, M.P.; Villard, S.; Pashov, A.; Stieltjes, N.; d’Oiron, R.; Saint-Remy, J.M.; Hoebeke, J.; et al. The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N. Engl. J. Med. 2002, 346, 662–667. [Google Scholar] [CrossRef]
- Garagiola, I.; Palla, R.; Peyvandi, F. Risk factors for inhibitor development in severe hemophilia A. Thromb. Res. 2018, 168, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Van Vulpen, L.F.D.; Mastbergen, S.C.; Lafeber, F.P.J.G.; Schutgens, R.E.G. Differential effects of bleeds on the development of arthropathy—Basic and applied issues. Haemophilia 2017, 23, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Melchiorre, D.; Manetti, M.; Matucci-Cerinic, M. Pathophysiology of Hemophilic Arthropathy. J. Clin. Med. 2017, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W.; Carcao, M.; Mahlangu, J.; Ragni, M.V.; Windyga, J.; et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia 2020, 26 (Suppl. S6), 1–158. [Google Scholar] [CrossRef]
- Van Vulpen, L.F.D.; Thomas, S.; Keny, S.A.; Mohanty, S.S. Synovitis and synovectomy in haemophilia. Haemophilia 2021, 27 (Suppl. S3), 96–102. [Google Scholar] [CrossRef]
- Lan, H.H.; Eustace, S.J.; Dorfman, D. Hemophilic arthropathy. Radiol. Clin. N. Am. 1996, 34, 446–450. [Google Scholar] [CrossRef]
- Pettersson, H.; Ahlberg, A.; Nilsson, I.M. A radiologic classification of hemophilic arthropathy. Clin. Orthop. 1980, 149, 153–159. [Google Scholar] [CrossRef]
- Wyseure, T.; Mosnier, L.O.; Von Drygalski, A. Advances and challenges in hemophilic arthropathy. Semin. Hematol. 2016, 53, 10–19. [Google Scholar] [CrossRef]
- Manco-Johnson, M.J.; Soucie, J.M.; Gill, J.C.; Joint Outcomes Committee of the Universal Data Collection, US Hemophilia Treatment Center Network. Prophylaxis usage, bleeding rates, and joint outcomes of hemophilia, 1999 to 2010: A surveillance project. Blood 2017, 129, 2368–2374. [Google Scholar] [CrossRef]
- Oldenburg, J. Optimal treatment strategies for hemophilia: Achievements and limitations of current prophylactic regimens. Blood 2015, 125, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Rath, G.; Goyal, A.K. Advancement in the treatment of haemophilia. Int. J. Biol. Macromol. 2018, 118, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Aledort, L.M.; Haschmeyer, R.H.; Pettersson, H. A longitudinal study of orthopaedic outcomes for severe factor-VIII-deficient haemophiliacs. The Orthopaedic Outcome Study Group. J. Intern. Med. 1994, 236, 391–399. [Google Scholar] [CrossRef]
- Rattray, B.; Nugent, D.J.; Young, G. Celecoxib in the treatment of haemophilic synovitis, target joints, and pain in adults and children with haemophilia. Haemophilia 2018, 24, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Gualtierotti, R.; Tafuri, F.; Arcudi, S.; Solimeno, P.L.; Acquati, J.; Landi, L.; Peyvandi, F. Current and Emerging Approaches for Pain Management in Hemophilic Arthropathy. Pain Ther. 2022, 11, 1–15. [Google Scholar] [CrossRef]
- McCarty, T.S.; Patel, P. Desmopressin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK554582/ (accessed on 27 April 2024).
- Franchini, M.; Lippi, G. The use of desmopressin in acquired haemophilia A: A systematic review. Blood Transfus. 2011, 9, 377–382. [Google Scholar] [CrossRef]
- Mannucci, P.M. The choice of plasma-derived clotting factor concentrates. Baillieres Clin. Haematol. 1996, 9, 273–290. [Google Scholar] [CrossRef]
- Lusher, J.M. Recombinant clotting factor concentrates. Baillieres Clin. Haematol. 1996, 9, 291–303. [Google Scholar] [CrossRef]
- Konkle, B.A.; Shapiro, A.D.; Quon, D.V.; Staber, J.M.; Kulkarni, R.; Ragni, M.V.; Chhabra, E.S.; Poloskey, S.; Rice, K.; Katragadda, S.; et al. BIVV001 Fusion Protein as Factor VIII Replacement Therapy for Hemophilia A. N. Engl. J. Med. 2020, 383, 1018–1027. [Google Scholar] [CrossRef]
- Hermans, C.; Mancuso, M.E.; Nolan, B.; Pasi, K.J. Recombinant factor VIII Fc for the treatment of haemophilia A. Eur. J. Haematol. 2021, 106, 745–761. [Google Scholar] [CrossRef]
- Giorgi, M.E.; Agusti, R.; de Lederkremer, R.M. Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein J. Org. Chem. 2014, 10, 1433–1444. [Google Scholar] [CrossRef]
- Konkle, B.A.; Stasyshyn, O.; Chowdary, P.; Bevan, D.H.; Mant, T.; Shima, M.; Engl, W.; Dyck-Jones, J.; Fuerlinger, M.; Patrone, L.; et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 2015, 126, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Windyga, J.; Lissitchkov, T.; Stasyshyn, O.; Mamonov, V.; Rusen, L.; Lamas, J.L.; Oh, M.S.; Chapman, M.; Fritsch, S.; Pavlova, B.G.; et al. Pharmacokinetics, efficacy and safety of BAX326, a novel recombinant factor IX: A prospective, controlled, multicentre phase I/III study in previously treated patients with severe (FIX level < 1%) or moderately severe (FIX level ≤ 2%) haemophilia B. Haemophilia 2014, 20, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.D.; Ragni, M.V.; Valentino, L.A.; Key, N.S.; Josephson, N.C.; Powell, J.S.; Cheng, G.; Thompson, A.R.; Goyal, J.; Tubridy, K.L.; et al. Recombinant factor IX-Fc fusion protein (rFIXFc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients. Blood 2012, 119, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Santagostino, E.; Martinowitz, U.; Lissitchkov, T.; Pan-Petesch, B.; Hanabusa, H.; Oldenburg, J.; Boggio, L.; Negrier, C.; Pabinger, I.; von Depka Prondzinski, M.; et al. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: Results of a phase 3 trial. Blood 2016, 127, 1761–1769. [Google Scholar] [CrossRef]
- Okaygoun, D.; Oliveira, D.D.; Soman, S.; Williams, R. Advances in the management of haemophilia: Emerging treatments and their mechanisms. J. Biomed. Sci. 2021, 28, 64. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, A.C. Gene therapy for hemophilia. Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 569–578. [Google Scholar] [CrossRef]
- Symington, E.; Rangarajan, S.; Lester, W.; Madan, B.; Pierce, G.F.; Raheja, P.; Millar, C.; Osmond, D.; Li, M.; Robinson, T.M. Valoctocogene roxaparvovec gene therapy provides durable haemostatic control for up to 7 years for haemophilia A. Haemophilia 2024, 30, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Pipe, S.W.; Leebeek, F.W.G.; Recht, M.; Key, N.S.; Castaman, G.; Miesbach, W.; Lattimore, S.; Peerlinck, K.; Van der Valk, P.; Coppens, M.; et al. Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. N. Engl. J. Med. 2023, 388, 706–718. [Google Scholar] [CrossRef]
- Rodríguez-Merchan, E.C. Surgical approaches to hemophilic arthropathy. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 2019, 30 (Suppl. S1), S11–S13. [Google Scholar] [CrossRef]
- Siegel, M.E.; Siegel, H.J.; Luck, J.V. Radiosynovectomy’s clinical applications and cost effectiveness: A review. Semin. Nucl. Med. 1997, 27, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merchán, E.C. The role of orthopaedic surgery in haemophilia: Current rationale, indications and results. EFORT Open Rev. 2019, 4, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Pulles, A.E.; Mastbergen, S.C.; Schutgens, R.E.G.; Lafeber, F.P.J.G.; Van Vulpen, L.F.D. Pathophysiology of hemophilic arthropathy and potential targets for therapy. Pharmacol. Res. 2017, 115, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Buckner, T.W.; Sidonio, R.; Witkop, M.; Guelcher, C.; Cutter, S.; Iyer, N.N.; Cooper, D.L. Correlations between patient-reported outcomes and self-reported characteristics in adults with hemophilia B and caregivers of children with hemophilia B: Analysis of the B-HERO-S study. Patient Relat. Outcome Meas. 2019, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Plug, I.; Peters, M.; Mauser-Bunschoten, E.P.; de Goede-Bolder, A.; Heijnen, L.; Smit, C.; Willemse, J.; Rosendaal, F.R.; van der Bom, J.G. Social participation of patients with hemophilia in the Netherlands. Blood 2008, 111, 1811–1815. [Google Scholar] [CrossRef]
- Buckner, T.W.; Witkop, M.; Guelcher, C.; Sidonio, R.; Kessler, C.M.; Clark, D.B.; Owens, W.; Frick, N.; Iyer, N.N.; Cooper, D.L. Impact of hemophilia B on quality of life in affected men, women, and caregivers—Assessment of patient-reported outcomes in the B-HERO-S study. Eur. J. Haematol. 2018, 100, 592–602. [Google Scholar] [CrossRef]
- Mazepa, M.A.; Monahan, P.E.; Baker, J.R.; Riske, B.K.; Soucie, J.M.; US Hemophilia Treatment Center Network. Men with severe hemophilia in the United States: Birth cohort analysis of a large national database. Blood 2016, 127, 3073–3081. [Google Scholar] [CrossRef] [PubMed]
BIOMARKER | RELEVANCE | ADVANTAGES | LIMITATIONS |
---|---|---|---|
CTX-II | Marker of type II collagen degeneration in cartilage | Sensitive to acute joint bleeding; rises shortly after bleeding episodes | High inter-individual variability; depends on accuracy of self-reported bleeds |
COMP | cartilage matrix protein. indicates general damage | Associated with radiographic joint damage | does not respond significantly to acute bleeds |
CS-846 | epitope of chondroitin sulfate; reflects cartilage synthesis | Increases after bleeding; linked to cartilage turnover | imited data; needs further validation |
VEGF | Pro-angiogenic factor, associated with synovitis and neoangiogenesis | Elevated in HA compared to other after bleeding disorders without joint disease | not specific to HA (also elevated in RA and OA) |
CTX-I | Marker of type I collagen degradation (bone turnover) | Studied in OR/Ra; available in commercial assays | no significant correlation with joint damage in HA |
C1,2/C2C | Products of collagen degradation; indicators of cartilage breakdown | Theoretically useful as general markers | did not correlate with disease severity in HA |
CRP | Systemic inflammation marker | Easy to measure; used in Ra disease activity algorithms | not joint-specific; reflects systemic inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač, K.; Caktaš, I.L.; Kalebota, N.; Perić, P. Hemophilic Arthropathy—Pathophysiology and Advances in Treatment. Rheumato 2025, 5, 5. https://doi.org/10.3390/rheumato5020005
Kovač K, Caktaš IL, Kalebota N, Perić P. Hemophilic Arthropathy—Pathophysiology and Advances in Treatment. Rheumato. 2025; 5(2):5. https://doi.org/10.3390/rheumato5020005
Chicago/Turabian StyleKovač, Katarina, Ivan Ljudevit Caktaš, Nataša Kalebota, and Porin Perić. 2025. "Hemophilic Arthropathy—Pathophysiology and Advances in Treatment" Rheumato 5, no. 2: 5. https://doi.org/10.3390/rheumato5020005
APA StyleKovač, K., Caktaš, I. L., Kalebota, N., & Perić, P. (2025). Hemophilic Arthropathy—Pathophysiology and Advances in Treatment. Rheumato, 5(2), 5. https://doi.org/10.3390/rheumato5020005