Pathogenesis, Epidemiology, and Risk Factors of Malignant Tumors in Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Pathogenesis
3. Epidemiology
4. Protective Factors of Malignant Tumors Associated with SLE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ladouceur, A.; Tessier-Cloutier, B.; Clarke, A.E.; Ramsey-Goldman, R.; Gordon, C.; Hansen, J.E.; Bernatsky, S. Cancer and Systemic Lupus Erythematosus. Rheum. Dis. Clin. N. Am. 2020, 46, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.E.; Pooley, N.; Marjenberg, Z.; Langham, J.; Nicholson, L.; Langham, S.; Embleton, N.; Wang, X.; Desta, B.; Barut, V.; et al. Risk of Malignancy in Patients with Systemic Lupus Erythematosus: Systematic Review and Meta-Analysis. Semin. Arthritis Rheum. 2021, 51, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Tselios, K.; Gladman, D.D.; Sheane, B.J.; Su, J.; Urowitz, M. All-Cause, Cause-Specific and Age-Specific Standardised Mortality Ratios of Patients with Systemic Lupus Erythematosus in Ontario, Canada over 43 Years (1971–2013). Ann. Rheum. Dis. 2019, 78, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Kariniemi, S.; Rantalaiho, V.; Virta, L.J.; Kautiainen, H.; Puolakka, K.; Elfving, P. Malignancies among Newly Diagnosed Systemic Lupus Erythematosus Patients and Their Survival. Lupus 2022, 31, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, R.; Wang, W. Exploring the Causality and Pathogenesis of Systemic Lupus Erythematosus in Breast Cancer Based on Mendelian Randomization and Transcriptome Data Analyses. Front. Immunol. 2023, 13, 1029884. [Google Scholar] [CrossRef]
- Han, J.Y.; Kim, H.; Jung, S.Y.; Jang, E.J.; Cho, S.K.; Sung, Y.K. Increased Risk of Malignancy in Patients with Systemic Lupus Erythematosus: Population-Based Cohort Study in Korea. Arthritis Res. Ther. 2021, 23, 270. [Google Scholar] [CrossRef]
- Zen, M.; Salmaso, L.; Barbiellini Amidei, C.; Fedeli, U.; Bellio, S.; Iaccarino, L.; Doria, A.; Saia, M. Mortality and Causes of Death in Systemic Lupus Erythematosus over the Last Decade: Data from a Large Population-Based Study. Eur. J. Intern. Med. 2023, 112, 45–51. [Google Scholar] [CrossRef]
- López-Otín, C.; Kroemer, G. Hallmarks of Health. Cell 2021, 184, 33–63. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Chan, T.A.; Kroemer, G.; Wolchok, J.D.; López-Soto, A. The Hallmarks of Successful Anticancer Immunotherapy. Sci. Transl. Med. 2018, 10, eaat7807. [Google Scholar] [CrossRef]
- Lahouel, K.; Younes, L.; Danilova, L.; Giardiello, F.M.; Hruban, R.H.; Groopman, J.; Kinzler, K.W.; Vogelstein, B.; Geman, D.; Tomasetti, C. Revisiting the Tumorigenesis Timeline with a Data-Driven Generative Model. Proc. Natl. Acad. Sci. USA 2020, 117, 857–864. [Google Scholar] [CrossRef]
- Pol, J.; Paillet, J.; Plantureux, C.; Kroemer, G. Beneficial Autoimmunity and Maladaptive Inflammation Shape Epidemiological Links between Cancer and Immune-Inflammatory Diseases. Oncoimmunology 2022, 11, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, J.; Wang, L.; Lin, Y.; Mou, Z.; Huang, X.; Chen, L. Identification of Monocyte-Associated Biomarkers in Systemic Lupus Erythematosus and Their Pan-Cancer Analysis. Lupus 2023, 32, 1369–1380. [Google Scholar] [CrossRef]
- Choi, M.Y.; Flood, K.; Bernatsky, S.; Ramsey-Goldman, R.; Clarke, A.E. A Review on SLE and Malignancy. Best Pract. Res. Clin. Rheumatol. 2017, 31, 373–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Strasser, A.; Kelly, G.L. Should Mutant TP53 Be Targeted for Cancer Therapy? Cell Death Differ. 2022, 29, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, J.P.; Bonavita, E.; Chakravarty, P.; Blees, H.; Cabeza-Cabrerizo, M.; Sammicheli, S.; Rogers, N.C.; Sahai, E.; Zelenay, S.; Reis e Sousa, C. NK Cells Stimulate Recruitment of CDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 2018, 172, 1022–1037.e14. [Google Scholar] [CrossRef]
- Markmann, C.; Bhoj, V.G. On the Road to Eliminating Long-Lived Plasma Cells—"are We There Yet?”. Immunol. Rev. 2021, 303, 154–167. [Google Scholar] [CrossRef]
- Schultheiß, C.; Steinmann, S.; Lohse, A.W.; Binder, M. B Cells in Autoimmune Hepatitis: Bystanders or Central Players? Semin. Immunopathol. 2022, 44, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Li, S.; Fu, X.Q.; Zhao, Z.J.; Xing, S. Bioinformatics Analyses of Combined Databases Identify Shared Differentially Expressed Genes in Cancer and Autoimmune Disease. J. Transl. Med. 2023, 21, 109. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Finisguerra, V.; Di Conza, G.; Di Matteo, M.; Serneels, J.; Costa, S.; Thompson, A.A.R.; Wauters, E.; Walmsley, S.; Prenen, H.; Granot, Z.; et al. MET Is Required for the Recruitment of Anti-Tumoural Neutrophils. Nature 2015, 522, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Showalter, A.; Limaye, A.; Oyer, J.L.; Igarashi, R.; Kittipatarin, C.; Copik, A.J.; Khaled, A.R. Cytokines in Immunogenic Cell Death: Applications for Cancer Immunotherapy. Cytokine 2017, 97, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Durcan, L.; O’Dwyer, T.; Petri, M. Management Strategies and Future Directions for Systemic Lupus Erythematosus in Adults. Lancet 2019, 393, 2332–2343. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.; Delatorre, N.; Hurst, C.; Rodgers, K.E. Targeting the Protective Arm of the Renin-Angiotensin System to Reduce Systemic Lupus Erythematosus Related Pathologies in MRL-Lpr Mice. Front. Immunol. 2020, 11, 1572. [Google Scholar] [CrossRef]
- Krovi, S.H.; Kuchroo, V.K. Activation Pathways That Drive CD4+ T Cells to Break Tolerance in Autoimmune Diseases. Immunol. Rev. 2022, 307, 161–190. [Google Scholar] [CrossRef]
- Hoffmann, C.; Noel, F.; Grandclaudon, M.; Massenet-Regad, L.; Michea, P.; Sirven, P.; Faucheux, L.; Surun, A.; Lantz, O.; Bohec, M.; et al. PD-L1 and ICOSL Discriminate Human Secretory and Helper Dendritic Cells in Cancer, Allergy and Autoimmunity. Nat. Commun. 2022, 13, 1983. [Google Scholar] [CrossRef] [PubMed]
- Policheni, A.N.; Teh, C.E.; Robbins, A.; Tuzlak, S.; Strasser, A.; Gray, D.H.D. PD-1 Cooperates with AIRE-Mediated Tolerance to Prevent Lethal Autoimmune Disease. Proc. Natl. Acad. Sci. USA 2022, 119, e2120149119. [Google Scholar] [CrossRef]
- Thien, A.; Prentzell, M.T.; Holzwarth, B.; Kläsener, K.; Kuper, I.; Boehlke, C.; Sonntag, A.G.; Ruf, S.; Maerz, L.; Nitschke, R.; et al. TSC1 Activates TGF-β-Smad2/3 Signaling in Growth Arrest and Epithelial-to-Mesenchymal Transition. Dev. Cell 2015, 32, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-H.; Oh, A.-Y.; Park, S.; Kang, S.-M.; Yoon, M.-H.; Woo, T.-G.; Hong, S.-D.; Hwang, J.; Ha, N.-C.; Lee, H.-Y.; et al. Loss of NF2 Induces TGFβ Receptor 1-Mediated Noncanonical and Oncogenic TGFβ Signaling: Implication of the Therapeutic Effect of TGFβ Receptor 1 Inhibitor on NF2 Syndrome. Mol. Cancer Ther. 2018, 17, 2271–2284. [Google Scholar] [CrossRef]
- Freudlsperger, C.; Bian, Y.; Contag Wise, S.; Burnett, J.; Coupar, J.; Yang, X.; Chen, Z.; Van Waes, C. TGF-β and NF-ΚB Signal Pathway Cross-Talk Is Mediated through TAK1 and SMAD7 in a Subset of Head and Neck Cancers. Oncogene 2013, 32, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.K.-K.; Chung, J.Y.-F.; Tang, P.C.-T.; Chan, A.S.-W.; Ho, J.Y.-Y.; Lin, T.P.-T.; Chen, J.; Leung, K.-T.; To, K.-F.; Lan, H.-Y.; et al. TGF-β Signaling Networks in the Tumor Microenvironment. Cancer Lett. 2022, 550, 215925. [Google Scholar] [CrossRef]
- Wang, Q.-M.; Tang, P.M.-K.; Lian, G.-Y.; Li, C.; Li, J.; Huang, X.-R.; To, K.-F.; Lan, H.-Y. Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells. Cancer Immunol. Res. 2018, 6, 965–977. [Google Scholar] [CrossRef]
- Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; et al. Role of the NFκB-Signaling Pathway in Cancer. OncoTargets Ther. 2018, 11, 2063–2073. [Google Scholar] [CrossRef]
- Gaptulbarova, K.A.; Tsyganov, M.M.; Pevzner, A.M.; Ibragimova, M.K.; Litviakov, N.V. NF-KB as a Potential Prognostic Marker and a Candidate for Targeted Therapy of Cancer. Exp. Oncol. 2020, 42, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, Death, and Autophagy in Cancer: NF-ΚB Turns up Everywhere. Cell Death Dis. 2020, 11, 210. [Google Scholar] [CrossRef]
- Ott, G.; Rosenwald, A. Molecular Pathogenesis of Follicular Lymphoma. Haematologica 2008, 93, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- von Locquenghien, M.; Rozalén, C.; Celià-Terrassa, T. Interferons in Cancer Immunoediting: Sculpting Metastasis and Immunotherapy Response. J. Clin. Investig. 2021, 131, e143296. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, B.; Chen, D. Type I Interferon-Mediated Tumor Immunity and Its Role in Immunotherapy. Cell. Mol. Life Sci. 2022, 79, 191. [Google Scholar] [CrossRef] [PubMed]
- Gocher, A.M.; Workman, C.J.; Vignali, D.A.A. Interferon-γ: Teammate or Opponent in the Tumour Microenvironment? Nat. Rev. Immunol. 2022, 22, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Vilmen, G.; Glon, D.; Siracusano, G.; Lussignol, M.; Shao, Z.; Hernandez, E.; Perdiz, D.; Quignon, F.; Mouna, L.; Poüs, C.; et al. BHRF1, a BCL2 Viral Homolog, Disturbs Mitochondrial Dynamics and Stimulates Mitophagy to Dampen Type I IFN Induction. Autophagy 2021, 17, 1296–1315. [Google Scholar] [CrossRef]
- Rackov, G.; Tavakoli Zaniani, P.; Colomo del Pino, S.; Shokri, R.; Monserrat, J.; Alvarez-Mon, M.; Martinez-A, C.; Balomenos, D. Mitochondrial Reactive Oxygen Is Critical for IL-12/IL-18-Induced IFN-γ Production by CD4+ T Cells and Is Regulated by Fas/FasL Signaling. Cell Death Dis. 2022, 13, 531. [Google Scholar] [CrossRef]
- Haymaker, C.; Johnson, D.H.; Murthy, R.; Bentebibel, S.E.; Uemura, M.I.; Hudgens, C.W.; Safa, H.; James, M.; Andtbacka, R.H.I.; Johnson, D.B.; et al. Tilsotolimod with Ipilimumab Drives Tumor Responses in Anti–Pd-1 Refractory Melanoma. Cancer Discov. 2021, 11, 1996–2013. [Google Scholar] [CrossRef]
- Cader, R.A.; Yee, A.K.M.; Yassin, A.; Ahmad, I.; Haron, S.N. Malignancy in Systemic Lupus Erythematosus (SLE) Patients. Asian Pac. J. Cancer Prev. 2018, 19, 3551–3555. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Peng, Z.; Lin, Z.; Lin, X.; Lin, W.; Deng, Y.; Yang, S.; Wei, S. Identification of Prognostic Genes for Breast Cancer Related to Systemic Lupus Erythematosus by Integrated Analysis and Machine Learning. Immunobiology 2023, 228, 152730. [Google Scholar] [CrossRef] [PubMed]
- Noble, P.W.; Bernatsky, S.; Clarke, A.E.; Isenberg, D.A.; Ramsey-Goldman, R.; Hansen, J.E. DNA-Damaging Autoantibodies and Cancer: The Lupus Butterfly Theory. Nat. Rev. Rheumatol. 2016, 12, 429–434. [Google Scholar] [CrossRef]
- Hansen, J.E.; Chan, G.; Liu, Y.; Hegan, D.C.; Dalal, S.; Dray, E.; Kwon, Y.; Xu, Y.; Xu, X.; Peterson-Roth, E.; et al. Targeting Cancer with a Lupus Autoantibody. Sci. Transl. Med. 2012, 4, 157ra142. [Google Scholar] [CrossRef]
- Ladouceur, A.; Clarke, A.E.; Ramsey-Goldman, R.; Bernatsky, S. Malignancies in Systemic Lupus Erythematosus: An Update. Curr. Opin. Rheumatol. 2019, 31, 678–681. [Google Scholar] [CrossRef]
- Hardenbergh, D.; Molina, E.; Naik, R.; Geetha, D.; Chaturvedi, S.; Timlin, H. Factors Mediating Cancer Risk in Systemic Lupus Erythematosus. Lupus 2022, 31, 1285–1295. [Google Scholar] [CrossRef]
- Lv, R.; Duan, L.; Gao, J.; Si, J.; Feng, C.; Hu, J.; Zheng, X. Bioinformatics-Based Analysis of the Roles of Basement Membrane-Related Gene AGRN in Systemic Lupus Erythematosus and Pan-Cancer Development. Front. Immunol. 2023, 14, 1231611. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Ibáñez, T.; Urruticoechea-Arana, A.; Rúa-Figueroa, I.; Martín-Martínez, M.A.; Ovalles-Bonilla, J.G.; Galindo, M.; Calvo-Alén, J.; Olivé, A.; Fernández-Nebro, A.; Menor-Almagro, R.; et al. Hormonal Dependence and Cancer in Systemic Lupus Erythematosus. Arthritis Care Res. 2020, 72, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Bernatsky, S.; Ramsey-Goldman, R.; Labrecque, J.; Joseph, L.; Boivin, J.F.; Petri, M.; Zoma, A.; Manzi, S.; Urowitz, M.B.; Gladman, D.; et al. Cancer Risk in Systemic Lupus: An Updated International Multi-Centre Cohort Study. J. Autoimmun. 2013, 42, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Ding, Y.; Xu, X.; Zhang, L.; Zhang, X.; Cui, Y.; Liu, L. Trans-Ethnic Mendelian Randomization Study of Systemic Lupus Erythematosus and Common Female Hormone-Dependent Malignancies. Chin. Med. J. 2023, 136, 2609–2620. [Google Scholar] [CrossRef] [PubMed]
- Bernatsky, S.; Ramsey-Goldman, R.; Foulkes, W.D.; Gordon, C.; Clarke, A.E. Breast, Ovarian, and Endometrial Malignancies in Systemic Lupus Erythematosus: A Meta-Analysis. Br. J. Cancer 2011, 104, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Wang, Y.; Zhang, J.; Song, N.; Xu, X.; Lu, Y. The Risks of Cancer Development in Systemic Lupus Erythematosus (SLE) Patients: A Systematic Review and Meta-Analysis. Arthritis Res. Ther. 2018, 20, 270. [Google Scholar] [CrossRef]
- Zhu, Q.Y. Bioinformatics Analysis of the Pathogenic Link between Epstein-Barr Virus Infection, Systemic Lupus Erythematosus and Diffuse Large B Cell Lymphoma. Sci. Rep. 2023, 13, 6310. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, H.; Yang, W.; Zhou, Z.; Yang, Y.; Jiang, X.; Yang, H.; Zhang, F. Cancer Occurrence after SLE: Effects of Medication-Related Factors, Disease-Related Factors and Survival from an Observational Study. Rheumatology 2023, 62, 659–667. [Google Scholar] [CrossRef]
- Bernatsky, S.; Ramsey-Goldman, R.; Joseph, L.; Boivin, J.F.; Costenbader, K.H.; Urowitz, M.B.; Gladman, D.D.; Fortin, P.R.; Nived, O.; Petri, M.A.; et al. Lymphoma Risk in Systemic Lupus: Effects of Disease Activity versus Treatment. Ann. Rheum. Dis. 2014, 73, 138–142. [Google Scholar] [CrossRef]
- Kang, K.Y.; Kim, H.O.; Yoon, H.S.; Lee, J.; Lee, W.C.; Ko, H.J.; Ju, J.H.; Cho, C.S.; Kim, H.Y.; Park, S.H. Incidence of Cancer among Female Patients with Systemic Lupus Erythematosus in Korea. Clin. Rheumatol. 2010, 29, 381–388. [Google Scholar] [CrossRef]
- Westermann, R.; Zobbe, K.; Cordtz, R.; Haugaard, J.H.; Dreyer, L. Increased Cancer Risk in Patients with Cutaneous Lupus Erythematosus and Systemic Lupus Erythematosus Compared with the General Population: A Danish Nationwide Cohort Study. Lupus 2021, 30, 752–761. [Google Scholar] [CrossRef]
- Ertz-Archambault, N.; Kosiorek, H.; Taylor, G.E.; Kelemen, K.; Dueck, A.; Castro, J.; Marino, R.; Gauthier, S.; Finn, L.; Sproat, L.Z.; et al. Association of Therapy for Autoimmune Disease with Myelodysplastic Syndromes and Acute Myeloid Leukemia. JAMA Oncol. 2017, 3, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhen, K.; Wu, Y.; Xue, Z.; Fang, Y.; Zhang, Q.; Bi, H.; Tian, X.; Ma, L.; Liu, C. Systemic Lupus Erythematosus and Prostate Cancer Risk: A Pool of Cohort Studies and Mendelian Randomization Analysis. J. Cancer Res. Clin. Oncol. 2023, 149, 9517–9528. [Google Scholar] [CrossRef]
- Takada, A.; Ohmori, K.; Yoneda, T.; Tsuyuoka, K.; Hasegawa, A.; Kiso, M.; Kannagi, R. Contribution of Carbohydrate Antigens Sialyl Lewis A and Sialyl Lewis X to Adhesion of Human Cancer Cells to Vascular Endothelium. Cancer Res. 1993, 53, 354–361. [Google Scholar] [PubMed]
- Xu, F.; Chen, Z. Causal Associations of Hyperthyroidism with Prostate Cancer, Colon Cancer, and Leukemia: A Mendelian Randomization Study. Front. Endocrinol. 2023, 14, 1162224. [Google Scholar] [CrossRef] [PubMed]
- Raymond, W.D.; Preen, D.B.; Keen, H.I.; Inderjeeth, C.A.; Nossent, J.C. Cancer Development in Patients Hospitalized with Systemic Lupus Erythematosus: A Population-Level Data Linkage Study. Int. J. Rheum. Dis. 2023, 26, 1557–1570. [Google Scholar] [CrossRef]
- Löfström, B.; Backlin, C.; Sundström, C.; Hellström-Lindberg, E.; Ekbom, A.; Lundberg, I.E. Myeloid Leukaemia in Systemic Lupus Erythematosus—A Nested Case-Control Study Based on Swedish Registers. Rheumatology 2009, 48, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ren, Z.; Li, J.; Li, T.; Liu, S.; Yu, Z. The Relationship between Cancer and Medication Exposure in Patients with Systemic Lupus Erythematosus: A Nested Case-Control Study. Arthritis Res. Ther. 2020, 22, 159. [Google Scholar] [CrossRef]
- Ichinose, K.; Sato, S.; Igawa, T.; Okamoto, M.; Takatani, A.; Endo, Y.; Tsuji, S.; Shimizu, T.; Sumiyoshi, R.; Koga, T.; et al. Evaluating the Safety Profile of Calcineurin Inhibitors: Cancer Risk in Patients with Systemic Lupus Erythematosus from the LUNA Registry—A Historical Cohort Study. Arthritis Res. Ther. 2024, 26, 48. [Google Scholar] [CrossRef]
- Bernatsky, S.; Ramsey-Goldman, R.; Urowitz, M.B.; Hanly, J.G.; Gordon, C.; Petri, M.A.; Ginzler, E.M.; Wallace, D.J.; Bae, S.C.; Romero-Diaz, J.; et al. Cancer Risk in a Large Inception Systemic Lupus Erythematosus Cohort: Effects of Demographic Characteristics, Smoking, and Medications. Arthritis Care Res. 2021, 73, 1789–1795. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, M.S.; Su, Y.J.; Cheng, T.T.; Lin, Y.S.; Chen, Y.C.; Chiu, W.C.; Chen, T.H. Cumulative Immunosuppressant Exposure Is Associated with Diversified Cancer Risk among 14 832 Patients with Systemic Lupus Erythematosus: A Nested Case-Control Study. Rheumatology 2017, 56, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Qiu, L.-J.; Hu, L.-F.; Cen, H.; Zhang, M.; Wen, P.-F.; Wang, X.-S.; Pan, H.-F.; Ye, D.-Q. Lung, Liver, Prostate, Bladder Malignancies Risk in Systemic Lupus Erythematosus: Evidence from a Meta-Analysis. Lupus 2014, 23, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Seo, M.S.; Hwang, I.C.; Shim, J.Y. An Updated Meta-Analysis on the Risk of Urologic Cancer in Patients with Systemic Lupus Erythematosus. Arch. Iran. Med. 2020, 23, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Kuo, C.-F.; Huang, L.H.; Huang, W.-K.; See, L.-C. Cancer Risk in Patients With Inflammatory Systemic Autoimmune Rheumatic Diseases: A Nationwide Population-Based Dynamic Cohort Study in Taiwan. Medicine 2016, 95, e3540. [Google Scholar] [CrossRef]
- Hardenbergh, D.; Naik, R.; Manno, R.; Azar, A.; Monroy Trujillo, J.M.; Adler, B.; Haque, U.; Timlin, H. The Cancer Risk Profile of Systemic Lupus Erythematosus Patients. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2022, 28, e257–e262. [Google Scholar] [CrossRef]
- Bae, E.H.; Lim, S.Y.; Han, K.-D.; Jung, J.-H.; Choi, H.S.; Kim, C.S.; Ma, S.K.; Kim, S.W. Systemic Lupus Erythematosus Is a Risk Factor for Cancer: A Nationwide Population-Based Study in Korea. Lupus 2019, 28, 317–323. [Google Scholar] [CrossRef]
- An, T.; Zhang, W. Mendelian Randomization Analysis Reveals a Protective Association between Genetically Predicted Systemic Lupus Erythematosus and Renal Cell Carcinoma. Medicine 2024, 103, E37545. [Google Scholar] [CrossRef]
- Tallbacka, K.R.; Pettersson, T.; Pukkala, E. Increased Incidence of Cancer in Systemic Lupus Erythematosus: A Finnish Cohort Study with More than 25 Years of Follow-Up. Scand. J. Rheumatol. 2018, 47, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Cairns, A.P.; Filippucci, E.; McVeigh, C.M.; Grassi, W. An Electronic Logbook for Rheumatologists Performing Musculoskeletal Ultrasound. Rheumatology 2006, 45, 1042. [Google Scholar] [CrossRef] [PubMed]
- Goobie, G.C.; Bernatsky, S.; Ramsey-Goldman, R.; Clarke, A.E.; Centre, H.S. HHS Public Access: Malignancies in Systemic Lupus Erythematosus—A 2015 Update. Curr Opin Rheumatol. 2015, 27, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liang, X.; Lin, X.; Lin, W.; Lin, Z.; Wei, S. Exploration of the Molecular Mechanisms, Shared Gene Signatures, and MicroRNAs between Systemic Lupus Erythematosus and Diffuse Large B Cell Lymphoma by Bioinformatics Analysis. Lupus 2022, 31, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Igusa, T.; Goldman, D.; Li, J.; Casciola-Rosen, L.; Rosen, A.; Petri, M. Association of Systemic Lupus Erythematosus Autoantibody Diversity with Breast Cancer Protection. Arthritis Res. Ther. 2021, 23, 64. [Google Scholar] [CrossRef]
- Pang, X.; Qian, J.; Jin, H.; Zhang, L.; Lin, L.; Wang, Y.; Lei, Y.; Zhou, Z.; Li, M.; Zhang, H. Durable Benefit from Immunotherapy and Accompanied Lupus Erythematosus in Pancreatic Adenocarcinoma with DNA Repair Deficiency. J. Immunother. Cancer 2020, 8, e000463. [Google Scholar] [CrossRef]
- Lopes Almeida Gomes, L.; Werth, A.J.; Thomas, P.; Werth, V.P. The Impact of Hormones in Autoimmune Cutaneous Diseases. J. Dermatol. Treat. 2024, 35, 2312241. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.L.; Hsu, H.-T.; Weng, S.F.; Lin, Y.S. Impact of Head and Neck Malignancies on Risk Factors and Survival in Systemic Lupus Erythematosus. Acta Otolaryngol. 2013, 133, 1088–1095. [Google Scholar] [CrossRef]
- Lu, M.; Bernatsky, S.; Ramsey-Goldman, R.; Petri, M.; Manzi, S.; Urowitz, M.B.; Gladman, D.; Fortin, P.R.; Ginzler, E.M.; Yelin, E.; et al. Non-Lymphoma Hematological Malignancies in Systemic Lupus Erythematosus. Oncology 2013, 85, 235–240. [Google Scholar] [CrossRef]
- Wadström, H.; Arkema, E.V.; Sjöwall, C.; Askling, J.; Simard, J.F. Cervical Neoplasia in Systemic Lupus Erythematosus: A Nationwide Study. Rheumatology 2017, 56, 613–619. [Google Scholar] [CrossRef]
- Rodrigues, L.R.S.; Ferraz, D.L.F.; de Oliveira, C.R.G.; Evangelista, K.; Silva, M.A.G.; Silva, F.P.Y.; de Silva, B.S.F. Risk and Prevalence of Oral Cancer in Patients with Different Types of Lupus Erythematosus: A Systematic Review and Meta-Analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 136, 595–605. [Google Scholar] [CrossRef]
- Li, H.; Zhou, J.; Zhou, L.; Zhang, X.; Shang, J.; Feng, X.; Yu, L.; Fan, J.; Ren, J.; Zhang, R.; et al. Identification of the Shared Gene Signatures and Molecular Pathways in Systemic Lupus Erythematosus and Diffuse Large B-Cell Lymphoma. J. Gene Med. 2023, 25, e3558. [Google Scholar] [CrossRef]
- Martín-López, M.; Galindo, M.; Pego-Reigosa, J.M.; Jiménez, N.; Olivé Marqués, A.; Tomero, E.; Freire, M.; Martínez-Barrio, J.; Boteanu, A.; Salgado-Perez, E.; et al. Clinical Characteristics and Risk Factors Associated with Lymphoma in Patients with Systemic Lupus Erythematosus: A Nationwide Cohort Study. Rheumatology 2023, 62, 217–224. [Google Scholar] [CrossRef]
- Wang, L.H.; Wang, W.M.; Lin, S.H.; Shieh, C.C. Bidirectional Relationship between Systemic Lupus Erythematosus and Non-Hodgkin’s Lymphoma: A Nationwide Population-Based Study. Rheumatology 2019, 58, 1245–1249. [Google Scholar] [CrossRef]
- Din, L.; Sheikh, M.; Kosaraju, N.; Smedby, K.E.; Bernatsky, S.; Berndt, S.I.; Skibola, C.F.; Nieters, A.; Wang, S.; McKay, J.D.; et al. Genetic Overlap between Autoimmune Diseases and Non-Hodgkin Lymphoma Subtypes. Genet. Epidemiol. 2019, 43, 844–863. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.; Devaragudi, S.; Kaur, L.; Singh, K.; Bawa, J.; Theik, N.W.Y.; Palisetti, S.; Jain, A. SLE and Multiple Myeloma: An Underlooked Link? A Review of Case Reports from the Last Decade. J. Med. Life 2024, 17, 141–146. [Google Scholar] [CrossRef]
- Parikh-Patel, A.; White, R.H.; Allen, M.; Cress, R. Cancer Risk in a Cohort of Patients with Systemic Lupus Erythematosus (SLE) in California. Cancer Causes Control 2008, 19, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Bernatsky, S.; Ramsey-Goldman, R.; Petri, M.; Urowitz, M.B.; Gladman, D.D.; Fortin, P.R.; Yelin, E.H.; Ginzler, E.; Hanly, J.G.; Peschken, C.; et al. Smoking Is the Most Significant Modifiable Lung Cancer Risk Factor in Systemic Lupus Erythematosus. J. Rheumatol. 2018, 45, 393–396. [Google Scholar] [CrossRef]
- Cheng, H.H.; Ho, C.M.; Huang, C.J.; Hsu, S.S.; Jiann, B.P.; Chen, J.S.; Huang, J.K.; Chang, H.T.; Lo, Y.K.; Yeh, J.H.; et al. Defect in Regulation of Ca2+ Movement in Platelets from Patients with Systemic Lupus Erythematosus. Pharmacology 2005, 73, 169–174. [Google Scholar] [CrossRef]
- Ekblom-Kullberg, S.; Kautiainen, H.; Alha, P.; Leirisalo-Repo, M.; Julkunen, H. Smoking and the Risk of Systemic Lupus Erythematosus. Clin. Rheumatol. 2013, 32, 1219–1222. [Google Scholar] [CrossRef]
- Sansone, P.; Bromberg, J. Environment, Inflammation, and Cancer. Curr. Opin. Genet. Dev. 2011, 21, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cheng, M.; Gai, J.; Zhang, R.; Du, T.; Li, Q. SPOCK2 Serves as a Potential Prognostic Marker and Correlates with Immune Infiltration in Lung Adenocarcinoma. Front. Genet. 2020, 11, 588499. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Rondaan, C.; Heijstek, M.W.; Agmon-Levin, N.; Van Assen, S.; Bijl, M.; Breedveld, F.C.; D’amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. 2019 Update of EULAR Recommendations for Vaccination in Adult Patients with Autoimmune Inflammatory Rheumatic Diseases. Ann. Rheum. Dis. 2020, 79, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, H.; Yang, Y.; Zhou, J.; Zhao, L.; Chen, H.; Fei, Y.; Zhang, W.; Li, M.; Zhao, Y.; et al. The Five Major Autoimmune Diseases Increase the Risk of Cancer: Epidemiological Data from a Large-Scale Cohort Study in China. Cancer Commun. 2022, 42, 435–446. [Google Scholar] [CrossRef]
- Chung, S.H.; Oshima, K.; Singleton, M.; Thomason, J.; Currier, C.; McCartney, S.; Singh, N. Determinants of Cervical Cancer Screening Patterns Among Women with Systemic Lupus Erythematosus. J. Rheumatol. 2022, 49, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Mohrmann, G.; Hengstler, J.G.; Hofmann, T.G.; Endele, S.U.; Lee, B.; Stelzer, C.; Zabel, B.; Brieger, J.; Hasenclever, D.; Tanner, B.; et al. SPOC1, a Novel PHD-Finger Protein: Association with Residual Disease and Survival in Ovarian Cancer. Int. J. Cancer 2005, 116, 547–554. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, Z.; Ma, J.; Zhang, L.; Xue, L. Tumour-Associated Antigens in Systemic Lupus Erythematosus: Association with Clinical Manifestations and Serological Indicators. Rheumatology 2024, 63, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Watts, E.L.; Appleby, P.N.; Perez-Cornago, A.; Bueno-de-Mesquita, H.B.; Chan, J.M.; Chen, C.; Cohn, B.A.; Cook, M.B.; Flicker, L.; Freedman, N.D.; et al. Low Free Testosterone and Prostate Cancer Risk: A Collaborative Analysis of 20 Prospective Studies. Eur. Urol. 2018, 74, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, R.W.; Malhotra, N.R.; Greenwald, D.T.; Wang, A.Y.; Prins, G.S.; Abern, M.R. Estrogens and Prostate Cancer. Prostate Cancer Prostatic Dis. 2019, 22, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Scandolara, T.B.; Panis, C. Neutrophil Traps, Anti-Myeloperoxidase Antibodies and Cancer: Are They Linked? Immunol. Lett. 2020, 221, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhou, D.; Wang, M.; Li, E.; Hou, C.; Su, Y.; Zou, Q.; Zhou, P.; Liu, X. RACGAP1 Modulates ECT2-Dependent Mitochondrial Quality Control to Drive Breast Cancer Metastasis. Exp. Cell Res. 2021, 400, 112493. [Google Scholar] [CrossRef] [PubMed]
- Mateo, F.; He, Z.; Mei, L.; de Garibay, G.R.; Herranz, C.; García, N.; Lorentzian, A.; Baiges, A.; Blommaert, E.; Gómez, A.; et al. Modification of BRCA1-Associated Breast Cancer Risk by HMMR Overexpression. Nat. Commun. 2022, 13, 1895. [Google Scholar] [CrossRef] [PubMed]
- Zaczek, A.J.; Markiewicz, A.; Seroczynska, B.; Skokowski, J.; Jaskiewicz, J.; Pienkowski, T.; Olszewski, W.P.; Szade, J.; Rhone, P.; Welnicka-Jaskiewicz, M.; et al. Prognostic Significance of TOP2A Gene Dosage in HER-2-Negative Breast Cancer. Oncologist 2012, 17, 1246–1255. [Google Scholar] [CrossRef]
- King, J.L.; Zhang, B.; Li, Y.; Li, K.P.; Ni, J.J.; Saavedra, H.I.; Dong, J.-T. TTK Promotes Mesenchymal Signaling via Multiple Mechanisms in Triple Negative Breast Cancer. Oncogenesis 2018, 7, 69. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, L.; Lu, X.; Wang, Y.; Li, R.; Jiang, G. KIF15 Contributes to Cell Proliferation and Migration in Breast Cancer. Hum. Cell 2020, 33, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Geng, M.; Ye, X.; Ji, Y.; Li, Y.; Zhang, X.; Xu, W. IRF7 Inhibits the Warburg Effect via Transcriptional Suppression of PKM2 in Osteosarcoma. Int. J. Biol. Sci. 2022, 18, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Peyvandi, S.; Duffey, N.; Huang, Y.T.; Barras, D.; Held, W.; Richard, F.; Delorenzi, M.; Sotiriou, C.; Desmedt, C.; et al. Type I Interferon/IRF7 Axis Instigates Chemotherapy-Induced Immunological Dormancy in Breast Cancer. Oncogene 2019, 38, 2814–2829. [Google Scholar] [CrossRef] [PubMed]
- Arreal, L.; Piva, M.; Fernández, S.; Revandkar, A.; Schaub-Clerigué, A.; Villanueva, J.; Zabala-Letona, A.; Pujana, M.; Astobiza, I.; Cortazar, A.R.; et al. Targeting PML in Triple Negative Breast Cancer Elicits Growth Suppression and Senescence. Cell Death Differ. 2020, 27, 1186–1199. [Google Scholar] [CrossRef] [PubMed]
- Tampakaki, M.; Oraiopoulou, M.-E.; Tzamali, E.; Tzedakis, G.; Makatounakis, T.; Zacharakis, G.; Papamatheakis, J.; Sakkalis, V. PML Differentially Regulates Growth and Invasion in Brain Cancer. Int. J. Mol. Sci. 2021, 22, 6289. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Zhang, P.; Guo, J.; Sun, J.; Lu, J.; Liu, S. Hematological Malignancies in Systemic Lupus Erythematosus: Clinical Characteristics, Risk Factors, and Prognosis—A Case-Control Study. Arthritis Res. Ther. 2022, 24, 5. [Google Scholar] [CrossRef] [PubMed]
- Lü, S.; Zhang, J.; Wu, H.; Zheng, X.; Chu, Y.; Xiong, S. Anti-tumor effect of anti-dsDNA autoantibodies. Zhonghua Zhong Liu Za Zhi 2005, 27, 73–76. [Google Scholar] [PubMed]
- Ruiz-Irastorza, G.; Ugarte, A.; Egurbide, M.V.; Garmendia, M.; Pijoan, J.I.; Martinez-Berriotxoa, A.; Aguirre, C. Antimalarials May Influence the Risk of Malignancy in Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2007, 66, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Sohn, T.A.; Bansal, R.; Su, G.H.; Murphy, K.M.; Kern, S.E. Erratum: High-Throughput Measurement of the Tp53 Response to Anticancer Drugs and Random Compounds Using a Stably Integrated Tp53-Responsive Luciferase Reporter. Carcinogenesis 2003, 24, 1713. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, Y.; Chen, L.; Gao, G.; Dong, H.; Yang, Y.; Dong, B.; Chen, X. Targeting Autophagy Augments In Vitro and In Vivo Antimyeloma Activity of DNA-Damaging Chemotherapy. Clin. Cancer Res. 2011, 17, 3248–3258. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Zhou, Q.; Wu, Y.; Shang, D.; Guo, Y.; Song, Z.; Zheng, Q.; Xiong, J. Autophagy Promotes Hepatocellular Carcinoma Cell Invasion through Activation of Epithelial-Mesenchymal Transition. Carcinogenesis 2013, 34, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.S.; Yeo, J.; Hwang, I.C.; Shim, J.Y. Risk of Pancreatic Cancer in Patients with Systemic Lupus Erythematosus: A Meta-Analysis. Clin. Rheumatol. 2019, 38, 3109–3116. [Google Scholar] [CrossRef]
Type of Malignant Tumor | SIR (95% CI) | Prevalence in SLE Compared to the General Population |
---|---|---|
Overall | 1.18 (1.00–1.38) | 1.5 to 2 times higher risk |
Hematologic | 3 to 4 times higher risk | |
Non-Hodgkin lymphoma (NHL) | 4.32 (3.4–5.47) | 4 to 5 times more often |
Hodgkin lymphoma, lymphoma, leukemia, multiple myeloma | 2.71 (1.68–4.36) | 2 to 3 times higher risk |
The respiratory system | 1.53 (1.11–2.11) | |
Lung | 1.75 (1.37–2.24) | 1.5 times higher risk; in case of smoking, the risk increases 7 times |
Larynx | 4.22 (1.97–9.03) | 2 times higher risk |
Oropharynx | 7.35 (1.12–48.36) | Increased risk |
The digestive system | 1.15 (0.97–1.37) | |
Oral | 2.69 (1.75–4.16) | 3 times higher risk |
Oesophagus | 1.73 (1.04–2.89) | Increased risk |
Liver | 2.81 (1.72–4.59) | 2 times higher risk |
Gallbladder | 1.83 (1.76–1.90) | Increased risk |
Hepatobiliary tract | 2.07 (1.37–3.12) | Increased risk |
Stomach | 1.34 (1.05–1.72) | 1.3 times higher risk |
Pancreatic | 1.26 (0.97–1.63) | Increased risk |
Colorectal | 1.65 (1.23–2.22) | Increased risk |
Anal | 5.69 (1.62–19.94) | |
The cardiovascular system | NR | NR |
The musculoskeletal system | NR | NR |
The urogenital system | 3.41 (1.86–6.23) | |
Bladder and kidney | 1.80 (1.04–3.11) | 1,5-krotnie wyższe ryzyko |
Ovarian | 0.86 (0.68–1.10) | Reduced risk |
Endometrial | 0.64 (0.49–0.83) | Reduced risk |
Cervical | 1.66 (1.16–2.36) | 1.5 times higher risk of squamous cell carcinoma and squamous intraepithelial lesions |
Vulva/vagina | 3.63 (2.54–5.20) | 3 times higher risk |
Prostate | 0.80 (0.65–0.99) | Reduced risk |
The nervous system and brain | 1.41 (1.02–1.93) | 1.3 times higher risk |
The skin tumors | ||
Nonmelanoma skin | 1.24 (0.98–1.57) | Increased risk |
Melanoma skin | 0.69 (0.53–0.90) | Reduced risk |
Others malignant tumors | ||
Head and neck | NR | Increased risk |
Thyroid | 1.50 (1.34–1.68) | 1.5 times higher risk |
Breast | 0.87 (0.76–1.00) | Reduced risk |
Type of Malignant Tumor | Protective Factors of Malignant Tumors | Risk Factors for Malignant Tumors |
---|---|---|
Overall | Immunosuppressive therapies (excluding antimalarials and steroids); cyclophosphamide; disease activity; acquired immunodeficiency syndrome (AIDS) | |
Hematologic | Antiphospholipid antibodies (aPL); immunosuppressive therapies (excluding antimalarials and steroids); cyclophosphamide; presence of BAFF, APRIL, and 3E10 antibody; TNFAIP3 or A20 rs77191406 polymorphism; increased levels of IL-6 and IL-10; EBV; | |
Non-Hodgkin lymphoma (NHL) | Male gender; Sjogren’s syndrome; CD40 allele rs4810485 (chromosome 20q13); HLA allele rs1270942 (chromosome 6p21.33); cyclophosphamide | |
Hodgkin lymphoma, lymphoma, leukemia, multiple myeloma | ||
The respiratory system | ||
Lung | Smoking; lung fibrosis; rs13194781 and rs1270942 (chromosome 6p21-22) | |
The digestive system | Acetylsalicylic acid | Smoking, alcohol consumption, diet, obesity, low physical activity, diabetes, |
Liver | HBV, HCV, nonalcoholic fatty liver disease | |
Stomach | ||
Pancreatic | Ro60/SSA antigen reduction, acetylsalicylic acid, melatonin, statins, curcumin, and flavonoids | |
The musculoskeletal system | The presence of anti-neutrophil cytoplasmic antibodies (ANCAs) | |
The urogenital system | ||
Bladder and kidney | Age, diet, low physical activity, cyclophosphamide; TNFAIP3 or A20 rs77191406 polymorphism | |
Ovarian, Endometrial | less exposure to endogenous and/or exogenous hormones | |
Cervical | HPV vaccination and cytology every year; | Immunosuppressive therapies (excluding antimalarials and steroids); HPV; cyclophosphamide |
Vulva/vagina | HPV vaccination | HPV; cyclophosphamide |
Prostate | Low levels of heat shock protein 27, reduced testosterone levels | Glucocorticosteroids |
The skin tumors | ||
Nonmelanoma skin | Antimalarials | Cyclophosphamide |
Melanoma skin | Use of UV filter, avoiding solar radiation | The presence of anti-neutrophil cytoplasmic antibodies (ANCAs) |
Others malignant tumors | ||
Head and neck | Smoking; HPV, EBV | |
Thyroid | Thyroid antibodies | |
Breast | Less exposure to endogenous and/or exogenous hormones; antimalarials; presence of anti-double-stranded DNA and 5C6 antibody; regulatory T cells (Tregs); low levels of heat shock protein 27 | rs9888739 (chromosome 16p11.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachut, D.; Przywara-Chowaniec, B.; Tomasik, A. Pathogenesis, Epidemiology, and Risk Factors of Malignant Tumors in Systemic Lupus Erythematosus. Rheumato 2024, 4, 209-221. https://doi.org/10.3390/rheumato4040017
Blachut D, Przywara-Chowaniec B, Tomasik A. Pathogenesis, Epidemiology, and Risk Factors of Malignant Tumors in Systemic Lupus Erythematosus. Rheumato. 2024; 4(4):209-221. https://doi.org/10.3390/rheumato4040017
Chicago/Turabian StyleBlachut, Dominika, Brygida Przywara-Chowaniec, and Andrzej Tomasik. 2024. "Pathogenesis, Epidemiology, and Risk Factors of Malignant Tumors in Systemic Lupus Erythematosus" Rheumato 4, no. 4: 209-221. https://doi.org/10.3390/rheumato4040017
APA StyleBlachut, D., Przywara-Chowaniec, B., & Tomasik, A. (2024). Pathogenesis, Epidemiology, and Risk Factors of Malignant Tumors in Systemic Lupus Erythematosus. Rheumato, 4(4), 209-221. https://doi.org/10.3390/rheumato4040017