Antibodies Specific to Rheumatologic and Neurologic Pathologies Found in Patient with Long COVID
Abstract
1. Introduction
2. Case Report and Methods
3. Results
3.1. Antibodies for MBP and MOG
3.2. Antibodies Specific to Rheumatological and Autoimmune Diseases
3.3. Dynamics of Interferons, Cytokines, and Their Corresponding Antibodies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chastain, E.M.L.; Miller, S.D. Molecular Mimicry as an Inducing Trigger for CNS Autoimmune Demyelinating Disease. Immunol. Rev. 2012, 245, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Ercolini, A.M.; Miller, S.D. The Role of Infections in Autoimmune Disease. Clin. Exp. Immunol. 2008, 155, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Klein, S.L.; Garibaldi, B.T.; Li, H.; Wu, C.; Osevala, N.M.; Li, T.; Margolick, J.B.; Pawelec, G.; Leng, S.X. Aging in COVID-19: Vulnerability, Immunity and Intervention. Ageing Res. Rev. 2021, 65, 101205. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves de Andrade, E.; Šimončičová, E.; Carrier, M.; Vecchiarelli, H.A.; Robert, M.-È.; Tremblay, M.-È. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front. Cell. Neurosci. 2021, 15, 647378. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-Month Neurological and Psychiatric Outcomes in 236 379 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Kolappa, K.; Prasad, M.; Radhakrishnan, D.; Thakur, K.T.; Solomon, T.; Michael, B.D.; Winkler, A.S.; Beghi, E.; Guekht, A.; et al. Frequency of Neurologic Manifestations in COVID-19. Neurology 2021, 97, e2269–e2281. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Y.; Li, M.; Chuang, H.; Ye, Y.; Zhao, H.; Wang, H. Clinical Manifestations and Evidence of Neurological Involvement in 2019 Novel Coronavirus SARS-CoV-2: A Systematic Review and Meta-Analysis. J. Neurol. 2020, 267, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.I.; Salama, S. Association of CNS Demyelination and COVID-19 Infection: An Updated Systematic Review. J. Neurol. 2022, 269, 541–576. [Google Scholar] [CrossRef]
- Abdullahi, A.; Candan, S.A.; Abba, M.A.; Bello, A.H.; Alshehri, M.A.; Afamefuna Victor, E.; Umar, N.A.; Kundakci, B. Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Favas, T.T.; Dev, P.; Chaurasia, R.N.; Chakravarty, K.; Mishra, R.; Joshi, D.; Mishra, V.N.; Kumar, A.; Singh, V.K.; Pandey, M.; et al. Neurological Manifestations of COVID-19: A Systematic Review and Meta-Analysis of Proportions. Neurol. Sci. 2020, 41, 3437–3470. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, A.M.; Sedykh, S.E.; Nevinsky, G.A. SARS-CoV-2 Infection as a Risk Factor for the Development of Autoimmune Pathology. Mol. Meditsina (Mol. Med.) 2022, 20, 3–10. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Sedykh, S.E.; Ermakov, E.A.; Matveev, A.L.; Odegova, E.I.; Sedykh, T.A.; Shcherbakov, D.N.; Merkuleva, I.A.; Volosnikova, E.A.; Nesmeyanova, V.S.; et al. Natural IgG against S-Protein and RBD of SARS-CoV-2 Do Not Bind and Hydrolyze DNA and Are Not Autoimmune. Int. J. Mol. Sci. 2022, 23, 13681. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.E.; Choy, E.H. C-Reactive Protein and Implications in Rheumatoid Arthritis and Associated Comorbidities. Semin. Arthritis Rheum. 2021, 51, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.S.; McDonald, D.; Lin, M.-W. Comparison of Two Anti-Histones Antibodies Commercial Assays in an Immunology Laboratory and Systemic Lupus Erythematosus. J. Immunol. Methods 2023, 512, 113401. [Google Scholar] [CrossRef]
- Kumar, A.; Narayan, R.K.; Prasoon, P.; Kumari, C.; Kaur, G.; Kumar, S.; Kulandhasamy, M.; Sesham, K.; Pareek, V.; Faiq, M.A.; et al. COVID-19 Mechanisms in the Human Body—What We Know So Far. Front. Immunol. 2021, 12, 693938. [Google Scholar] [CrossRef]
- Sher, E.K.; Ćosović, A.; Džidić-Krivić, A.; Farhat, E.K.; Pinjić, E.; Sher, F. COVID-19 a Triggering Factor of Autoimmune and Multi-Inflammatory Diseases. Life Sci. 2023, 319, 121531. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.-J.; Yang, C.-C.; Liao, M.-T.; Lu, K.-C.; Hu, W.-C.; Lin, C.-P. An Important Call: Suggestion of Using IL-10 as Therapeutic Agent for COVID-19 with ARDS and Other Complications. Virulence 2023, 14, 2190650. [Google Scholar] [CrossRef] [PubMed]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological Dysfunction Persists for 8 Months Following Initial Mild-to-Moderate SARS-CoV-2 Infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Görg, S.; Klouche, M.; Wilhelm, D.; Kirchner, H. [Interferon Alpha Antibodies Show No Cross Reactions with Typical Autoantibodies]. Immun. Infekt. 1993, 21 (Suppl. 1), 54–56. [Google Scholar] [PubMed]
- Biggioggero, M.; Gabbriellini, L.; Meroni, P.L. Type I Interferon Therapy and Its Role in Autoimmunity. Autoimmunity 2010, 43, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, S.; Jörns, A. Therapy Concepts in Type 1 Diabetes Mellitus Treatment: Disease Modifying versus Curative Approaches. J. Mol. Med. 2024, 102, 1451–1455. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Lu, H.; Liu, P.; Zhang, Y.; Wang, C. Serum Metabolomics Signature of Maternally Inherited Diabetes and Deafness by Gas Chromatography–Time of Flight Mass Spectrometry. J. Diabetes Investig. 2024, 16, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Reindl, M.; Di Pauli, F.; Rostásy, K.; Berger, T. The Spectrum of MOG Autoantibody-Associated Demyelinating Diseases. Nat. Rev. Neurol. 2013, 9, 455–461. [Google Scholar] [CrossRef]
- Quismorio, F.P.; Beardmore, T.; Kaufman, R.L.; Mongan, E.S. IgG Rheumatoid Factors and Anti-Nuclear Antibodies in Rheumatoid Vasculitis. Clin. Exp. Immunol. 1983, 52, 333–340. [Google Scholar]
- Nguyen, C.P.; Cao, V.V.; Fehér, J.; Gergely, P. Correlation between the Levels of Antinuclear Antibodies, Anti-DNA Antibodies, and Complement in Systemic Lupus Erythematosus. Acta Med. Hung. 1988, 45, 145–159. [Google Scholar]
- Pedro, A.; Romaldini, J.; Americo, C.; Takei, K. Association of Circulating Antibodies Against Double-Stranded and Single-Stranded DNA with Thyroid Autoantibodies in Graves’ Disease and Hashimoto’s Thyroiditis Patients. Exp. Clin. Endocrinol. Diabetes 2006, 114, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Melamud, M.M.; Ermakov, E.A.; Boiko, A.S.; Parshukova, D.A.; Sizikov, A.E.; Ivanova, S.A.; Nevinsky, G.A.; Buneva, V.N. Serum Cytokine Levels of Systemic Lupus Erythematosus Patients in the Presence of Concomitant Cardiovascular Diseases. Endocr. Metab. Immune Disord.-Drug Targets 2022, 22, 852–861. [Google Scholar] [CrossRef]
- Samuel, C.E. Antiviral Actions of Interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef]
- Stetson, D.B.; Medzhitov, R. Type I Interferons in Host Defense. Immunity 2006, 25, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Sparrer, K.M.; Gack, M.U. Intracellular Detection of Viral Nucleic Acids. Curr. Opin. Microbiol. 2015, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Dong, H.; Xia, Q.-S.; Huang, Z.; Wang, D.; Zhao, Y.; Liu, W.; Tu, S.; Zhang, M.; Wang, Q.; et al. Correlation Analysis between Disease Severity and Inflammation-Related Parameters in Patients with COVID-19: A Retrospective Study. BMC Infect. Dis. 2020, 20, 963. [Google Scholar] [CrossRef] [PubMed]
- Mahat, R.K.; Panda, S.; Rathore, V.; Swain, S.; Yadav, L.; Sah, S.P. The Dynamics of Inflammatory Markers in Coronavirus Disease-2019 (COVID-19) Patients: A Systematic Review and Meta-Analysis. Clin. Epidemiol. Glob. Health 2021, 11, 100727. [Google Scholar] [CrossRef] [PubMed]
- Bolívar-Marín, S.; Castro, M.; Losada-Floriano, D.; Cortés, S.; Perdomo-Celis, F.; Lastra, G.; Narváez, C.F. A Specific Pattern and Dynamics of Circulating Cytokines Are Associated with the Extension of Lung Injury and Mortality in Colombian Adults with Coronavirus Disease-19. J. Interf. Cytokine Res. 2023, 43, 206–215. [Google Scholar] [CrossRef]
- Aghagoli, G.; Gallo Marin, B.; Katchur, N.J.; Chaves-Sell, F.; Asaad, W.F.; Murphy, S.A. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review. Neurocrit. Care 2021, 34, 1062–1071. [Google Scholar] [CrossRef]
- Manzano, G.S.; McEntire, C.R.S.; Martinez-Lage, M.; Mateen, F.J.; Hutto, S.K. Acute Disseminated Encephalomyelitis and Acute Hemorrhagic Leukoencephalitis Following COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1080. [Google Scholar] [CrossRef]
- Marignier, R.; Hacohen, Y.; Cobo-Calvo, A.; Pröbstel, A.-K.; Aktas, O.; Alexopoulos, H.; Amato, M.-P.; Asgari, N.; Banwell, B.; Bennett, J.; et al. Myelin-Oligodendrocyte Glycoprotein Antibody-Associated Disease. Lancet Neurol. 2021, 20, 762–772. [Google Scholar] [CrossRef]
- Lee, T.H.; Nam, M.; Do Seo, J.; Kim, H.; Kim, H.-R.; Hur, M.; Yun, Y.-M.; Moon, H.-W. Evaluation of Cellular Responses to ChAdOx1-NCoV-19 and BNT162b2 Vaccinations. Ann. Lab. Med. 2023, 43, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, C.; Terpos, E.; Rosati, M.; Angel, M.; Bear, J.; Stellas, D.; Karaliota, S.; Apostolakou, F.; Bagratuni, T.; Patseas, D.; et al. Systemic IL-15, IFN-γ, and IP-10/CXCL10 Signature Associated with Effective Immune Response to SARS-CoV-2 in BNT162b2 MRNA Vaccine Recipients. Cell Rep. 2021, 36, 109504. [Google Scholar] [CrossRef]
- Kumar, N.P.; Banurekha, V.V.; Girish Kumar, C.P.; Nancy, A.; Padmapriyadarsini, C.; Mary, A.S.; Devi, K.U.; Murhekar, M.; Babu, S. Prime-Boost Vaccination With Covaxin/BBV152 Induces Heightened Systemic Cytokine and Chemokine Responses. Front. Immunol. 2021, 12, 752397. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Go, J.; Sung, H.; Kim, S.W.; Walter, M.; Knabl, L.; Furth, P.A.; Hennighausen, L.; Huh, J.W. Heterologous ChAdOx1-BNT162b2 Vaccination in Korean Cohort Induces Robust Immune and Antibody Responses That Includes Omicron. iScience 2022, 25, 104473. [Google Scholar] [CrossRef]
- Gaucher, D.; Therrien, R.; Kettaf, N.; Angermann, B.R.; Boucher, G.; Filali-Mouhim, A.; Moser, J.M.; Mehta, R.S.; Drake, D.R.; Castro, E.; et al. Yellow Fever Vaccine Induces Integrated Multilineage and Polyfunctional Immune Responses. J. Exp. Med. 2008, 205, 3119–3131. [Google Scholar] [CrossRef] [PubMed]
- Andersen-Nissen, E.; Fiore-Gartland, A.; Ballweber Fleming, L.; Carpp, L.N.; Naidoo, A.F.; Harper, M.S.; Voillet, V.; Grunenberg, N.; Laher, F.; Innes, C.; et al. Innate Immune Signatures to a Partially-Efficacious HIV Vaccine Predict Correlates of HIV-1 Infection Risk. PLoS Pathog. 2021, 17, e1009363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, A.M.; Klyaus, N.A.; Sedykh, S.E.; Nevinsky, G.A. Antibodies Specific to Rheumatologic and Neurologic Pathologies Found in Patient with Long COVID. Rheumato 2025, 5, 1. https://doi.org/10.3390/rheumato5010001
Timofeeva AM, Klyaus NA, Sedykh SE, Nevinsky GA. Antibodies Specific to Rheumatologic and Neurologic Pathologies Found in Patient with Long COVID. Rheumato. 2025; 5(1):1. https://doi.org/10.3390/rheumato5010001
Chicago/Turabian StyleTimofeeva, Anna M., Nataliya A. Klyaus, Sergey E. Sedykh, and Georgy A. Nevinsky. 2025. "Antibodies Specific to Rheumatologic and Neurologic Pathologies Found in Patient with Long COVID" Rheumato 5, no. 1: 1. https://doi.org/10.3390/rheumato5010001
APA StyleTimofeeva, A. M., Klyaus, N. A., Sedykh, S. E., & Nevinsky, G. A. (2025). Antibodies Specific to Rheumatologic and Neurologic Pathologies Found in Patient with Long COVID. Rheumato, 5(1), 1. https://doi.org/10.3390/rheumato5010001