Blood Flow Restriction Training for Tendinopathy Rehabilitation: A Potential Alternative to Traditional Heavy-Load Resistance Training
Abstract
:1. Introduction
2. BFRT Application Overview
3. BFRT Mechanisms
4. BFRT General Outcomes
5. BFRT Musculoskeletal Rehabilitation Outcomes
6. Effects of BFRT on Healthy Tendons
7. BFRT in Tendon Rupture Rehabilitation
8. BFRT in Tendinopathy Rehabilitation
9. Resistance Training in Tendinopathy
10. Clinical Implications and Practical Application
11. Future Research—Current Trials on BFRT in Tendon Rehabilitation
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1-RM | 1 repetition maximum |
ACL | Anterior cruciate ligament |
BFRT | Blood flow restriction training |
CSA | Cross-sectional area |
LL-BFRT | Low-load blood flow restriction training |
LL-RT | Low-load resistance training |
HL-BFRT | High-load blood flow restriction training |
HL-RT | High-load resistance training |
HSRT | Heavy slow resistance training |
MRI | Magnetic resonance imaging |
RCT | Randomised controlled trial |
References
- Rolnick, N.; Kimbrell, K.; Cerqueira, M.S.; Weatherford, B.; Brandner, C. Perceived Barriers to Blood Flow Restriction Training. Front. Rehabil. Sci. 2021, 2, 697082. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D.S.; Bailey, L.; Wilk, K.E.; Mangine, R.E.; Head, P.; Grindstaff, T.L.; Morrison, S. Blood Flow Restriction Training. J. Athl. Train. 2021, 56, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.; Rosenblatt, B.; Gissane, C.; Paton, B.; Patterson, S.D. Interface pressure, perceptual, and mean arterial pressure responses to different blood flow restriction systems. Scand. J. Med. Sci. Sport. 2018, 28, 1757–1765. [Google Scholar] [CrossRef]
- Barber-Westin, S.; Noyes, F.R. Blood Flow-Restricted Training for Lower Extremity Muscle Weakness due to Knee Pathology: A Systematic Review. Sport. Health 2019, 11, 69–83. [Google Scholar] [CrossRef]
- Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; de Souza, E.O.; Machado, M.; Dudeck, J.E.; Wilson, J.M. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin. Physiol. Funct. Imaging 2014, 34, 317–321. [Google Scholar] [CrossRef]
- Nitzsche, N.; Stauber, A.; Tiede, S.; Schulz, H. The effectiveness of blood-flow restricted resistance training in the musculoskeletal rehabilitation of patients with lower limb disorders: A systematic review and meta-analysis. Clin. Rehabil. 2021, 35, 1221–1234. [Google Scholar] [CrossRef]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br. J. Sport. Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Wilk, M.; Wojdala, G.; Gołaś, A. Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. Int. J. Environ. Res. Public Health 2019, 16, 4897. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.C.; Housh, T.J.; Keller, J.L.; Smith, C.M.; Anders, J.V.; Schmidt, R.J.; Johnson, G.O.; Cramer, J.T. Low-load blood flow restriction elicits greater concentric strength than non-blood flow restriction resistance training but similar isometric strength and muscle size. Eur. J. Appl. Physiol. 2020, 120, 425–441. [Google Scholar] [CrossRef]
- Kataoka, R.; Vasenina, E.; Hammert, W.B.; Ibrahim, A.H.; Dankel, S.J.; Buckner, S.L. Muscle growth adaptations to high-load training and low-load training with blood flow restriction in calf muscles. Eur. J. Appl Physiol. 2022, 122, 623–634. [Google Scholar] [CrossRef]
- Shiromaru, F.F.; de Salles Painelli, V.; Silva-Batista, C.; Longo, A.R.; Lasevicius, T.; Schoenfeld, B.J.; Aihara, A.Y.; Tricoli, V.; de Almeida Peres, B.; Teixeira, E.L. Differential muscle hypertrophy and edema responses between high-load and low-load exercise with blood flow restriction. Scand. J. Med. Sci. Sport. 2019, 29, 1713–1726. [Google Scholar] [CrossRef]
- Centner, C.; Wiegel, P.; Gollhofer, A.; Konig, D. Effects of Blood Flow Restriction Training on Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.C.; Tirko, A.W.; Shipe, J.M.; Sumeriski, O.R.; Moran, K. The Systemic Effects of Blood Flow Restriction Training: A Systematic Review. Int. J. Sport. Phys. Ther. 2021, 16, 978–990. [Google Scholar] [CrossRef]
- Karabulut, M.; Esparza, B.; Dowllah, I.M.; Karabulut, U. The impact of low-intensity blood flow restriction endurance training on aerobic capacity, hemodynamics, and arterial stiffness. J. Sport. Med. Phys. Fit. 2021, 61, 877–884. [Google Scholar] [CrossRef]
- Karabulut, M.; Sherk, V.D.; Bemben, D.A.; Bemben, M.G. Inflammation marker, damage marker and anabolic hormone responses to resistance training with vascular restriction in older males. Clin. Physiol. Funct. Imaging 2013, 33, 393–399. [Google Scholar] [CrossRef]
- Neto, G.R.; Sousa, M.S.; Costa e Silva, G.V.; Gil, A.L.; Salles, B.F.; Novaes, J.S. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clin. Physiol. Funct. Imaging 2016, 36, 53–59. [Google Scholar] [CrossRef]
- Silva, J.C.G.; Aniceto, R.R.; Oliota-Ribeiro, L.S.; Neto, G.R.; Leandro, L.S.; Cirilo-Sousa, M.S. Mood Effects of Blood Flow Restriction Resistance Exercise Among Basketball Players. Percept. Mot. Ski. 2018, 125, 788–801. [Google Scholar] [CrossRef]
- da Silva, J.C.G.; Silva, K.F.; Domingos-Gomes, J.R.; Batista, G.R.; da Silva Freitas, E.D.; Torres, V.B.C.; do Socorro Cirilo-Sousa, M. Aerobic exercise with blood flow restriction affects mood state in a similar fashion to high intensity interval exercise. Physiol. Behav. 2019, 211, 112677. [Google Scholar] [CrossRef]
- Okita, K.; Takada, S.; Morita, N.; Takahashi, M.; Hirabayashi, K.; Yokota, T.; Kinugawa, S. Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Appl. Physiol. Nutr. Metab. 2019, 44, 759–764. [Google Scholar] [CrossRef]
- Bowman, E.N.; Elshaar, R.; Milligan, H.; Takahashi, M.; Hirabayashi, K.; Yokota, T.; Kinugawa, S. Proximal, Distal, and Contralateral Effects of Blood Flow Restriction Training on the Lower Extremities: A Randomized Controlled Trial. Sport. Health 2019, 11, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.D.S.; Karabulut, M.; Bemben, M.G. The Evolution of Blood Flow Restricted Exercise. Front. Physiol. 2021, 12, 747759. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.J.F.; Dakin, S.G.; Millar, N.L.; Carr, A.J. Review: Emerging concepts in the pathogenesis of tendinopathy. Surgeon 2017, 15, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, C.; Fu, S.C.; Chua, E.; Hu, X.; Rolf, C.; Mattila, V.M.; Qin, L.; Yung, P.S.H.; Chan, K.M. Critical review on the socio-economic impact of tendinopathy. Asia Pac. J. Sport. Med. Arthrosc. Rehabil. Technol. 2016, 4, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, S.P.; Kjaer, M. The impact of loading, unloading, ageing and injury on the human tendon. J. Physiol. 2019, 597, 1283–1298. [Google Scholar] [CrossRef] [Green Version]
- Bielitzki, R.; Behrendt, T.; Behrens, M.; Schega, L. Time to Save Time: Beneficial Effects of Blood Flow Restriction Training and the Need to Quantify the Time Potentially Saved by Its Application During Musculoskeletal Rehabilitation. Phys. Ther. 2021, 101, pzab172. [Google Scholar] [CrossRef]
- Zabrzynski, J.; Gagat, M.; Paczesny, L.; Lapaj, L.; Grzanka, D. Electron microscope study of the advanced tendinopathy process of the long head of the biceps brachii tendon treated arthroscopically. Folia Morphol. 2018, 77, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Zabrzynski, J.; Gagat, M.; Lapaj, L.; Paczesny, L.; Yataganbaba, A.; Szwedowski, D.; Huri, G. Relationship between long head of the biceps tendon histopathology and long-term functional results in smokers. A time to reevaluate the Bonar score? Ther. Adv. Chronic Dis. 2021, 12, 2040622321990262. [Google Scholar] [CrossRef]
- Zabrzynski, J.; Gagat, M.; Paczesny, L.; Grzanka, D.; Huri, G. Correlation between smoking and neovascularization in biceps tendinopathy: A functional preoperative and immunohistochemical study. Ther. Adv. Chronic Dis. 2020, 11, 2040622320956418. [Google Scholar] [CrossRef]
- Millar, N.L.; Silbernagel, K.G.; Thorborg, K.; Kirwan, P.D.; Galatz, L.M.; Abrams, G.D.; Murrell, G.A.; McInnes, I.B.; Rodeo, S.A. Tendinopathy. Nat. Rev. Dis. Prim. 2021, 7, 1. [Google Scholar] [CrossRef]
- Zwerver, J.; Bredeweg, S.W.; van den Akker-Scheek, I. Prevalence of Jumper’s knee among nonelite athletes from different sports: A cross-sectional survey. Am. J. Sport. Med. 2011, 39, 1984–1988. [Google Scholar] [CrossRef] [Green Version]
- Canosa-Carro, L.; Bravo-Aguilar, M.; Abuin-Porras, V.; Almazán-Polo, J.; García-Pérez-de-Sevilla, G.; Rodríguez-Costa, I.; López-López, D.; Navarro-Flores, E.; Romero-Morales, C. Current understanding of the diagnosis and management of the tendinopathy: An update from the lab to the clinical practice. Disease Month 2022, 68, 101314. [Google Scholar] [CrossRef]
- Skjong, C.C.; Meininger, A.K.; Ho, S.S. Tendinopathy treatment: Where is the evidence? Clin. Sport. Med. 2012, 31, 329–350. [Google Scholar] [CrossRef]
- Lian, O.B.; Engebretsen, L.; Bahr, R. Prevalence of jumper’s knee among elite athletes from different sports: A cross-sectional study. Am. J. Sport. Med. 2005, 33, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Beyer, R.; Kongsgaard, M.; Hougs Kjaer, B.; Ohlenschlaeger, T.; Kjaer, M.; Magnusson, S.P. Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy: A Randomized Controlled Trial. Am. J. Sport. Med. 2015, 43, 1704–1711. [Google Scholar] [CrossRef]
- Kongsgaard, M.; Qvortrup, K.; Larsen, J.; Aagaard, P.; Doessing, S.; Hansen, P.; Kjaer, M.; Magnusson, S.P. Fibril morphology and tendon mechanical properties in patellar tendinopathy: Effects of heavy slow resistance training. Am. J. Sport. Med. 2010, 38, 749–756. [Google Scholar] [CrossRef]
- Bohm, S.; Mersmann, F.; Arampatzis, A. Human tendon adaptation in response to mechanical loading: A systematic review and meta-analysis of exercise intervention studies on healthy adults. Sport. Med. Open 2015, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Couppe, C.; Svensson, R.B.; Silbernagel, K.G.; Langberg, H.; Magnusson, S.P. Eccentric or Concentric Exercises for the Treatment of Tendinopathies? J. Orthop. Sport. Phys. Ther. 2015, 45, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Loenneke, J.P.; Abe, T.; Wilson, J.M.; Ugrinowitsch, C.; Bemben, M.G. Blood flow restriction: How does it work? Front. Physiol. 2012, 3, 392. [Google Scholar] [CrossRef] [Green Version]
- Lixandrao, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.C.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 361–378. [Google Scholar] [CrossRef]
- Teixeira, E.L.; Barroso, R.; Silva-Batista, C.; Laurentino, G.C.; Loenneke, J.P.; Roschel, H.; Ugrinowitsch, C.; Tricoli, V. Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle Nerve 2018, 57, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sport. Med. 2015, 45, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.B.; Pham, H.; Yalamanchi, N.; Chang, J. Flexor tendon wound healing in vitro: The effect of lactate on tendon cell proliferation and collagen production. J. Hand Surg. 2001, 26, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Boesen, A.P.; Dideriksen, K.; Couppe, C.; Magnusson, S.P.; Schjerling, P.; Boesen, M.; Kjaer, M.; Langberg, H. Tendon and skeletal muscle matrix gene expression and functional responses to immobilization and rehabilitation in young males: Effect of growth hormone administration. J. Physiol. 2013, 591, 6039–6052. [Google Scholar] [CrossRef] [PubMed]
- Counts, B.R.; Dankel, S.J.; Barnett, B.E.; Kim, D.; Mouser, J.G.; Allen, K.M.; Thiebaud, R.S.; Abe, T.; Bemben, M.G.; Loenneke, J.P. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 2016, 53, 438–445. [Google Scholar] [CrossRef]
- Lixandrao, M.E.; Ugrinowitsch, C.; Laurentino, G.; Libardi, C.A.; Aihara, A.Y.; Cardoso, F.N.; Tricoli, V.; Roschel, H. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur. J. Appl. Physiol. 2015, 115, 2471–2480. [Google Scholar] [CrossRef]
- Madarame, H.; Neya, M.; Ochi, E.; Nakazato, K.; Sato, Y.; Ishii, N. Cross-transfer effects of resistance training with blood flow restriction. Med. Sci. Sport. Exerc. 2008, 40, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Rossow, L.M.; Fahs, C.A.; Loenneke, J.P.; Thiebaud, R.S.; Sherk, V.D.; Abe, T.; Bemben, M.G. Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin. Physiol. Funct. Imaging 2012, 32, 331–337. [Google Scholar] [CrossRef]
- May, A.K.; Brandner, C.R.; Warmington, S.A. Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise. Physiol Rep. 2017, 5, e13142. [Google Scholar] [CrossRef]
- Fahs, C.A.; Loenneke, J.P.; Thiebaud, R.S.; Rossow, L.M.; Kim, D.; Abe, T.; Beck, T.W.; Feeback, D.L.; Bemben, D.A.; Bemben, M.G. Muscular adaptations to fatiguing exercise with and without blood flow restriction. Clin. Physiol. Funct. Imaging 2015, 35, 167–176. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Loprinzi, P.D.; Abe, T.; Thiebaud, R.S.; Allen, K.M.; Mouser, J.G.; Bemben, M.G. Arm circumference influences blood pressure even when applying the correct cuff size: Is a further correction needed? Int. J. Cardiol. 2016, 202, 743–744. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Wilson, J.M.; Marin, P.J.; Zourdos, M.C.; Bemben, M.G. Low intensity blood flow restriction training: A meta-analysis. Eur. J. Appl. Physiol. 2012, 112, 1849–1859. [Google Scholar] [CrossRef]
- Ladlow, P.; Coppack, R.J.; Dharm-Datta, S.; Conway, D.; Sellon, E.; Patterson, S.D.; Bennett, A.N. Low-Load Resistance Training with Blood Flow Restriction Improves Clinical Outcomes in Musculoskeletal Rehabilitation: A Single-Blind Randomized Controlled Trial. Front. Physiol. 2018, 9, 1269. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Head, P.; Warmington, S.; Brandner, C. Blood flow restriction training: A novel approach to augment clinical rehabilitation: How to do it. Br. J. Sport. Med. 2017, 51, 1648–1649. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Wilson, J.M.; Balapur, A.; Thrower, A.D.; Barnes, J.T.; Pujol, T.J. Time under tension decreased with blood flow-restricted exercise. Clin. Physiol. Funct. Imaging 2012, 32, 268–273. [Google Scholar] [CrossRef]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sport. Med. 2015, 45, 313–325. [Google Scholar] [CrossRef]
- Laurentino, G.; Ugrinowitsch, C.; Aihara, A.Y.; Fernandes, A.R.; Parcell, A.C.; Ricard, M.; Tricoli, V. Effects of strength training and vascular occlusion. Int. J. Sport. Med. 2008, 29, 664–667. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.L.; Aagaard, P.; Bech, R.D.; Nygaard, T.; Hvid, L.G.; Wernbom, M.; Suetta, C.; Frandsen, U. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J. Physiol. 2012, 590, 4351–4361. [Google Scholar] [CrossRef]
- Ohta, H.; Kurosawa, H.; Ikeda, H.; Iwase, Y.; Satou, N.; Nakamura, S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop. Scand. 2003, 74, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sport. Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef]
- Fleck, S.J. Non-linear periodization for general fitness & athletes. J. Hum. Kinet. 2011, 29A, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sport. Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Martin-Hernandez, J.; Marin, P.J.; Menendez, H.; Ferrero, C.; Loenneke, J.P.; Herrero, A.J. Muscular adaptations after two different volumes of blood flow-restricted training. Scand. J. Med. Sci. Sport. 2013, 23, e114–e120. [Google Scholar] [CrossRef] [PubMed]
- Luebbers, P.E.; Fry, A.C.; Kriley, L.M.; Butler, M.S. The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J. Strength Cond. Res. 2014, 28, 2270–2280. [Google Scholar] [CrossRef]
- Kang, D.Y.; Kim, H.S.; Lee, K.S.; Kim, Y.M. The effects of bodyweight-based exercise with blood flow restriction on isokinetic knee muscular function and thigh circumference in college students. J. Phys. Ther. Sci. 2015, 27, 2709–2712. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Mouser, J.G.; Dankel, S.J.; Bell, Z.W.; Buckner, S.L.; Mattocks, K.T.; Jessee, M.B.; Loenneke, J.P. A method to standardize the blood flow restriction pressure by an elastic cuff. Scand. J. Med. Sci. Sport. 2019, 29, 329–335. [Google Scholar] [CrossRef]
- Hughes, L.; Jeffries, O.; Waldron, M.; Rosenblatt, B.; Gissane, C.; Paton, B.; Patterson, S.D. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ 2018, 6, e4697. [Google Scholar] [CrossRef] [Green Version]
- McEwen, J.; Hughes, L. Pressure Prescription for Blood Flow Restriction Exercise. Med. Sci. Sport. Exerc. 2020, 52, 1436. [Google Scholar] [CrossRef]
- De Queiros, V.S.; de Franca, I.M.; Trybulski, R.; Vieira, J.G.; Dos Santos, I.K.; Neto, G.R.; Wilk, M.; de Matos, D.G.; Vieira, W.H.B.; Novaes, J.D.S. Myoelectric Activity and Fatigue in Low-Load Resistance Exercise with Different Pressure of Blood Flow Restriction: A Systematic Review and Meta-Analysis. Front. Physiol. 2021, 12, 786752. [Google Scholar] [CrossRef]
- Brandner, C.R.; Kidgell, D.J.; Warmington, S.A. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction. Scand. J. Med. Sci. Sport. 2015, 25, 770–777. [Google Scholar] [CrossRef]
- Brandner, C.R.; Warmington, S.A.; Kidgell, D.J. Corticomotor Excitability is Increased Following an Acute Bout of Blood Flow Restriction Resistance Exercise. Front. Hum. Neurosci. 2015, 9, 652. [Google Scholar] [CrossRef]
- Kubota, A.; Sakuraba, K.; Koh, S.; Ogura, Y.; Tamura, Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J. Sci. Med. Sport 2011, 14, 95–99. [Google Scholar] [CrossRef]
- Mattocks, K.T.; Jessee, M.B.; Counts, B.R.; Buckner, S.L.; Grant Mouser, J.; Dankel, S.J.; Laurentino, G.C.; Loenneke, J.P. The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol. Behav. 2017, 171, 181–186. [Google Scholar] [CrossRef]
- Jessee, M.B.; Dankel, S.J.; Buckner, S.L.; Mouser, J.G.; Mattocks, K.T.; Loenneke, J.P. The Cardiovascular and Perceptual Response to Very Low Load Blood Flow Restricted Exercise. Int. J. Sport. Med. 2017, 38, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Jessee, M.B.; Mattocks, K.T.; Buckner, S.L.; Mouser, J.G.; Counts, B.R.; Dankel, S.J.; Laurentino, G.C.; Loenneke, J.P. The acute muscular response to blood flow-restricted exercise with very low relative pressure. Clin. Physiol. Funct. Imaging 2018, 38, 304–311. [Google Scholar] [CrossRef]
- Cook, S.B.; Clark, B.C.; Ploutz-Snyder, L.L. Effects of exercise load and blood-flow restriction on skeletal muscle function. Med. Sci. Sport. Exerc. 2007, 39, 1708–1713. [Google Scholar] [CrossRef]
- Hunt, J.E.; Stodart, C.; Ferguson, R.A. The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction. Eur. J. Appl. Physiol. 2016, 116, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Jessee, M.B.; Buckner, S.L.; Dankel, S.J.; Counts, B.R.; Abe, T.; Loenneke, J.P. The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sport. Med. 2016, 46, 913–921. [Google Scholar] [CrossRef]
- Mouser, J.G.; Dankel, S.J.; Jessee, M.B.; Mattocks, K.T.; Buckner, S.L.; Counts, B.R.; Loenneke, J.P. A tale of three cuffs: The hemodynamics of blood flow restriction. Eur. J. Appl. Physiol. 2017, 117, 1493–1499. [Google Scholar] [CrossRef]
- Kacin, A.; Strazar, K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sport. 2011, 21, e231–e241. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, S.; Hammarstrom, D.; Strand, T.A.; Zacharoff, E.; Whist, J.E.; Rauk, I.; Nygaard, H.; Vegge, G.; Hanestadhaugen, M.; Wernbom, M.; et al. Blood flow-restricted strength training displays high functional and biological efficacy in women: A within-subject comparison with high-load strength training. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 309, R767–R779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loenneke, J.P.; Thiebaud, R.S.; Fahs, C.A.; Rossow, L.M.; Abe, T.; Bemben, M.G. Effect of cuff type on arterial occlusion. Clin. Physiol. Funct. Imaging 2013, 33, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Loenneke, J.P.; Ye, X.; Bemben, D.A.; Beck, T.W.; Larson, R.D.; Bemben, M.G. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve 2017, 56, E126–E133. [Google Scholar] [CrossRef] [PubMed]
- Credeur, D.P.; Hollis, B.C.; Welsch, M.A. Effects of handgrip training with venous restriction on brachial artery vasodilation. Med. Sci. Sport. Exerc. 2010, 42, 1296–1302. [Google Scholar] [CrossRef] [Green Version]
- Staunton, C.A.; May, A.K.; Brandner, C.R.; Warmington, S.A. Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults. Eur. J. Appl. Physiol. 2015, 115, 2293–2302. [Google Scholar] [CrossRef]
- Hunt, J.E.; Galea, D.; Tufft, G.; Bunce, D.; Ferguson, R.A. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J. Appl. Physiol. 2013, 115, 403–411. [Google Scholar] [CrossRef]
- Hunt, J.E.; Walton, L.A.; Ferguson, R.A. Brachial artery modifications to blood flow-restricted handgrip training and detraining. J. Appl. Physiol. 2012, 112, 956–961. [Google Scholar] [CrossRef]
- Minniti, M.C.; Statkevich, A.P.; Kelly, R.L.; Rigsby, V.P.; Exline, M.M.; Rhon, D.I.; Clewley, D. The Safety of Blood Flow Restriction Training as a Therapeutic Intervention for Patients with Musculoskeletal Disorders: A Systematic Review. Am. J. Sport. Med. 2020, 48, 1773–1785. [Google Scholar] [CrossRef]
- Warmington, S.A.; Staunton, C.A.; May, A.K.; Brandner, C.R. Blood flow restriction exercise: Acute versus chronic safety. Eur. J. Appl. Physiol. 2016, 116, 861–862. [Google Scholar] [CrossRef]
- Zabrzynski, J.; Paczesny, L.; Lapaj, L.; Grzanka, D.; Szukalski, J. Is the inflammation process absolutely absent in tendinopathy of the long head of the biceps tendon? Histopathologic study of the long head of the biceps tendon after arthroscopic treatment. Pol. J. Pathol. 2017, 68, 318–325. [Google Scholar] [CrossRef]
- Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Buller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, A.; Konstantinides, S.V.; McCumber, M. Thrombosis: A major contributor to global disease burden. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2363–2371. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.E.; de Freitas, M.C.; Zanchi, N.E.; Lira, F.S.; Cholewa, J.M. The Role of Inflammation and Immune Cells in Blood Flow Restriction Training Adaptation: A Review. Front. Physiol. 2018, 9, 1376. [Google Scholar] [CrossRef]
- Shimizu, R.; Hotta, K.; Yamamoto, S.; Matsumoto, T.; Kamiya, K.; Kato, M.; Hamazaki, N.; Kamekawa, D.; Akiyama, A.; Kamada, Y.; et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 2016, 116, 749–757. [Google Scholar] [CrossRef]
- de Oliveira, M.F.; Caputo, F.; Corvino, R.B.; Denadai, B.S. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand. J. Med. Sci. Sport. 2016, 26, 1017–1025. [Google Scholar] [CrossRef]
- Reis, J.F.; Fatela, P.; Mendonca, G.V.; Vaz, J.R.; Valamatos, M.J.; Infante, J.; Mil-Homens, P.; Alves, F.B. Tissue Oxygenation in Response to Different Relative Levels of Blood-Flow Restricted Exercise. Front. Physiol. 2019, 10, 407. [Google Scholar] [CrossRef]
- Cook, S.B.; Kanaley, J.A.; Ploutz-Snyder, L.L. Neuromuscular function following muscular unloading and blood flow restricted exercise. Eur. J. Appl. Physiol. 2014, 114, 1357–1365. [Google Scholar] [CrossRef]
- Drummond, M.J.; Fujita, S.; Abe, T.; Dreyer, H.C.; Volpi, E.; Rasmussen, B.B. Human muscle gene expression following resistance exercise and blood flow restriction. Med. Sci. Sport. Exerc. 2008, 40, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Sieland, J.; Niederer, D.; Engeroff, T.; Vogt, L.; Troidl, C.; Schmitz-Rixen, T.; Banzer, W.; Troidl, K. Effects of single bouts of different endurance exercises with different intensities on microRNA biomarkers with and without blood flow restriction: A three-arm, randomized crossover trial. Eur. J. Appl. Physiol. 2021, 121, 3243–3255. [Google Scholar] [CrossRef]
- Fry, C.S.; Glynn, E.L.; Drummond, M.J.; Timmerman, K.L.; Fujita, S.; Abe, T.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J. Appl. Physiol. 2010, 108, 1199–1209. [Google Scholar] [CrossRef]
- Moriggi, R., Jr.; Mauro, H.D.; Dias, S.C.; Matos, J.M.; Urtado, M.B.; Camarço, N.F.; Neto, I.S.; Nascimento, D.C.; Tibana, R.A.; Assumpção, C.O.; et al. Similar hypotensive responses to resistance exercise with and without blood flow restriction. Biol. Sport 2015, 32, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renzi, C.P.; Tanaka, H.; Sugawara, J. Effects of leg blood flow restriction during walking on cardiovascular function. Med. Sci. Sport. Exerc. 2010, 42, 726–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iida, H.; Nakajima, T.; Kurano, M.; Yasuda, T.; Sakamaki, M.; Sato, Y.; Yamasoba, T.; Abe, T. Effects of walking with blood flow restriction on limb venous compliance in elderly subjects. Clin. Physiol. Funct. Imaging 2011, 31, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, H.; Loenneke, J.P.; Buckner, S.L.; Abe, T. Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli. Med. Hypotheses 2016, 88, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, J.; Tomoto, T.; Tanaka, H. Impact of leg blood flow restriction during walking on central arterial hemodynamics. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 309, R732–R739. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, M.; Bemben, D.A.; Sherk, V.D.; Anderson, M.A.; Abe, T.; Bemben, M.G. Effects of high-intensity resistance training and low-intensity resistance training with vascular restriction on bone markers in older men. Eur. J. Appl. Physiol. 2011, 111, 1659–1667. [Google Scholar] [CrossRef]
- Lixandrao, M.E.; Roschel, H.; Ugrinowitsch, C.; Miquelini, M.; Alvarez, I.F.; Libardi, C.A. Blood-Flow Restriction Resistance Exercise Promotes Lower Pain and Ratings of Perceived Exertion Compared With Either High- or Low-Intensity Resistance Exercise Performed to Muscular Failure. J. Sport Rehabil. 2019, 28, 706–710. [Google Scholar] [CrossRef]
- Bowman, E.N.; Elshaar, R.; Milligan, H.; Jue, G.; Mohr, K.; Brown, P.; Watanabe, D.M.; Limpisvasti, O. Upper-extremity blood flow restriction: The proximal, distal, and contralateral effects-a randomized controlled trial. J. Shoulder Elb. Surg. 2020, 29, 1267–1274. [Google Scholar] [CrossRef]
- Centner, C.; Lauber, B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don’t Know. Front. Physiol. 2020, 11, 887. [Google Scholar] [CrossRef]
- Mendonca, G.V.; Vaz, J.R.; Pezarat-Correia, P.; Fernhall, B. Effects of Walking with Blood Flow Restriction on Excess Post-exercise Oxygen Consumption. Int. J. Sport. Med. 2015, 36, e11–e18. [Google Scholar] [CrossRef]
- Abe, T.; Sakamaki, M.; Fujita, S.; Ozaki, H.; Sugaya, M.; Sato, Y.; Nakajima, T. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J. Geriatr. Phys. Ther. 2010, 33, 34–40. [Google Scholar]
- Tanaka, M.; Morifuji, T.; Yoshikawa, M.; Nakanishi, R.; Fujino, H. Effects of combined treatment with blood flow restriction and low-intensity electrical stimulation on diabetes mellitus-associated muscle atrophy in rats. J. Diabetes 2019, 11, 326–334. [Google Scholar] [CrossRef]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood Flow Restriction Training for Athletes: A Systematic Review. Am. J. Sport. Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef]
- Labata-Lezaun, N.; Llurda-Almuzara, L.; Gonzalez-Rueda, V.; López-de-Celis, C.; Cedeño-Bermúdez, S.; Bañuelos-Pago, J.; Perez-Bellmunt, A. Effectiveness of Blood Flow Restriction Training on Muscle Strength and Physical Performance in Older Adults: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2022, 103, 1848–1957. [Google Scholar] [CrossRef]
- Rodrigo-Mallorca, D.; Loaiza-Betancur, A.F.; Monteagudo, P.; Blasco-Lafarga, C.; Chulvi-Medrano, I. Resistance Training with Blood Flow Restriction Compared to Traditional Resistance Training on Strength and Muscle Mass in Non-Active Older Adults: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 11441. [Google Scholar] [CrossRef]
- Gronlund, C.; Christoffersen, K.S.; Thomsen, K.; Masud, T.; Jepsen, D.B.; Ryg, J. Effect of blood-flow restriction exercise on falls and fall related risk factors in older adults 60 years or above: A systematic review. J. Musculoskelet. Neuronal Interact. 2020, 20, 513–525. [Google Scholar]
- Baker, B.S.; Stannard, M.S.; Duren, D.L.; Cook, J.L.; Stannard, J.P. Does Blood Flow Restriction Therapy in Patients Older Than Age 50 Result in Muscle Hypertrophy, Increased Strength, or Greater Physical Function? A Systematic Review. Clin. Orthop. Relat. Res. 2020, 478, 593–606. [Google Scholar] [CrossRef]
- Slysz, J.; Stultz, J.; Burr, J.F. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J. Sci. Med. Sport 2016, 19, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Gronfeldt, B.M.; Lindberg Nielsen, J.; Mieritz, R.M.; Lund, H.; Aagaard, P. Effect of blood-flow restricted vs heavy-load strength training on muscle strength: Systematic review and meta-analysis. Scand. J. Med. Sci. Sport. 2020, 30, 837–848. [Google Scholar] [CrossRef]
- Thiebaud, R.S.; Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Kim, D.; Abe, T.; Anderson, M.A.; Young, K.C.; Bemben, D.A.; Bemben, M.G. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin. Physiol. Funct. Imaging 2013, 33, 344–352. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P. Walking with blood flow restriction: Could it help the elderly to get more out of every step? J. Sci. Med. Sport 2017, 20, 964. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Loenneke, J.P.; Thiebaud, R.S.; Abe, T. Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. PLoS ONE 2012, 7, e52843. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kearns, C.F.; Sato, Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol.) 2006, 100, 1460–1466. [Google Scholar] [CrossRef]
- Manimmanakorn, A.; Hamlin, M.J.; Ross, J.J.; Taylor, R.; Manimmanakorn, N. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J. Sci. Med. Sport 2013, 16, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Thiebaud, R.S.; Yasuda, T.; Loenneke, J.P.; Abe, T. Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv. Med. Appl. Sci. 2013, 5, 53–59. [Google Scholar] [CrossRef]
- Libardi, C.A.; Chacon-Mikahil, M.P.; Cavaglieri, C.R.; Tricoli, V.; Roschel, H.; Vechin, F.C.; Conceição, M.S.; Ugrinowitsch, C. Effect of concurrent training with blood flow restriction in the elderly. Int. J. Sport. Med. 2015, 36, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.B.; LaRoche, D.P.; Villa, M.R.; Barile, H.; Manini, T.M. Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp. Gerontol. 2017, 99, 138–145. [Google Scholar] [CrossRef]
- Moore, D.R.; Burgomaster, K.A.; Schofield, L.M.; Gibala, M.J.; Sale, D.G.; Phillips, S.M. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur. J. Appl. Physiol. 2004, 92, 399–406. [Google Scholar] [CrossRef]
- Takarada, Y.; Takazawa, H.; Ishii, N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med. Sci. Sport. Exerc. 2000, 32, 2035–2039. [Google Scholar] [CrossRef] [Green Version]
- Burgomaster, K.A.; Moore, D.R.; Schofield, L.M.; Phillips, S.M.; Sale, D.G.; Gibala, M.J. Resistance training with vascular occlusion: Metabolic adaptations in human muscle. Med. Sci. Sport. Exerc. 2003, 35, 1203–1208. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Aagaard, P.; Prokhorova, T.A.; Nielsen, J.L.; Aagaard, P.; Prokhorova, T.A.; Nygaard, T.; Bech, R.D.; Suetta, C.; Frandsen, U. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J. Physiol. 2017, 595, 4857–4873. [Google Scholar] [CrossRef] [Green Version]
- Manini, T.M.; Clark, B.C. Blood flow restricted exercise and skeletal muscle health. Exerc. Sport Sci. Rev. 2009, 37, 78–85. [Google Scholar] [CrossRef]
- Martin-Hernandez, J.; Marin, P.J.; Menendez, H.; Loenneke, J.P.; Coelho-e-Silva, M.J.; García-López, D.; Herrero, A.J. Changes in muscle architecture induced by low load blood flow restricted training. Acta Physiol. Hung. 2013, 100, 411–418. [Google Scholar] [CrossRef]
- Centner, C.; Zdzieblik, D.; Roberts, L.; Gollhofer, A.; Konig, D. Effects of Blood Flow Restriction Training with Protein Supplementation on Muscle Mass and Strength in Older Men. J. Sport. Sci. Med. 2019, 18, 471–478. [Google Scholar]
- Hill, E.C. Eccentric, but not concentric blood flow restriction resistance training increases muscle strength in the untrained limb. Phys. Ther. Sport 2020, 43, 1–7. [Google Scholar] [CrossRef]
- Hughes, L.; Grant, I.; Patterson, S.D. Aerobic exercise with blood flow restriction causes local and systemic hypoalgesia and increases circulating opioid and endocannabinoid levels. J. Appl. Physiol 2021, 131, 1460–1468. [Google Scholar] [CrossRef]
- Hughes, L.; Patterson, S.D. The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. J. Appl. Physiol. 2020, 128, 914–924. [Google Scholar] [CrossRef]
- Hughes, L.; Patterson, S.D. Low intensity blood flow restriction exercise: Rationale for a hypoalgesia effect. Med. Hypotheses 2019, 132, 109370. [Google Scholar] [CrossRef]
- Korakakis, V.; Whiteley, R.; Epameinontidis, K. Blood Flow Restriction induces hypoalgesia in recreationally active adult male anterior knee pain patients allowing therapeutic exercise loading. Phys. Ther. Sport 2018, 32, 235–243. [Google Scholar] [CrossRef]
- Hayhurst, D.; Coppack, R.J.; Ingram, C.; Conway, D.; Cassidy, R.P.; Ladlow, P. Integrating blood flow restriction with low-load resistance exercise in a UK specialist military primary care rehabilitation facility. BMJ Mil. Health 2021, 168, 329–330. [Google Scholar] [CrossRef]
- Grantham, B.; Korakakis, V.; O’Sullivan, K. Does blood flow restriction training enhance clinical outcomes in knee osteoarthritis: A systematic review and meta-analysis. Phys. Ther. Sport 2021, 49, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.P.; Santo, R.C.D.E.; Ramis, T.R.; Portes, J.K.S.; Chakr, R.M.D.S.; Xavier, R.M. The effects of resistance training with blood flow restriction on muscle strength, muscle hypertrophy and functionality in patients with osteoarthritis and rheumatoid arthritis: A systematic review with meta-analysis. PLoS ONE 2021, 16, e0259574. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shaharudin, S.; Abdul Kadir, M.R. Effects of Blood Flow Restriction Training on Muscle Strength and Pain in Patients with Knee Injuries: A Meta-Analysis. Am. J. Phys. Med. Rehabil. 2021, 100, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Charles, D.; White, R.; Reyes, C.; Palmer, D. A Systematic Review of the Effects of Blood Flow Restriction Training on Quadriceps Muscle Atrophy and Circumference Post Acl Reconstruction. Int. J. Sport. Phys. Ther. 2020, 15, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Caetano, D.; Oliveira, C.; Correia, C.; Barbosa, P.; Montes, A.; Carvalho, P. Rehabilitation outcomes and parameters of blood flow restriction training in ACL injury: A scoping review. Phys. Ther. Sport 2021, 49, 129–137. [Google Scholar] [CrossRef]
- Lu, Y.; Patel, B.H.; Kym, C.; Nwachukwu, B.U.; Beletksy, A.; Forsythe, B.; Chahla, J. Perioperative Blood Flow Restriction Rehabilitation in Patients Undergoing ACL Reconstruction: A Systematic Review. Orthop. J. Sport. Med. 2020, 8, 2325967120906822. [Google Scholar] [CrossRef] [Green Version]
- Glattke, K.E.; Tummala, S.V.; Chhabra, A. Anterior Cruciate Ligament Reconstruction Recovery and Rehabilitation: A Systematic Review. J. Bone Jt. Surg. Am. 2021, 104, 739–754. [Google Scholar] [CrossRef]
- Baron, J.E.; Parker, E.A.; Duchman, K.R.; Westermann, R.W. Perioperative and Postoperative Factors Influence Quadriceps Atrophy and Strength After ACL Reconstruction: A Systematic Review. Orthop. J. Sport. Med. 2020, 8, 2325967120930296. [Google Scholar] [CrossRef]
- Wengle, L.; Migliorini, F.; Leroux, T.; Chahal, J.; Theodoropoulos, J.; Betsch, M. The Effects of Blood Flow Restriction in Patients Undergoing Knee Surgery: A Systematic Review and Meta-analysis. Am. J. Sport. Med. 2021, 50, 2824–2833. [Google Scholar] [CrossRef]
- Wang, H.N.; Chen, Y.; Cheng, L.; Cai, Y.H.; Li, W.; Ni, G.X. Efficacy and Safety of Blood Flow Restriction Training in Patients with Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res. 2022, 74, 89–98. [Google Scholar] [CrossRef]
- Pitsillides, A.; Stasinopoulos, D.; Mamais, I. Blood flow restriction training in patients with knee osteoarthritis: Systematic review of randomized controlled trials. J. Bodyw. Mov. Ther. 2021, 27, 477–486. [Google Scholar] [CrossRef]
- Ferlito, J.V.; Pecce, S.A.P.; Oselame, L.; De Marchi, T. The blood flow restriction training effect in knee osteoarthritis people: A systematic review and meta-analysis. Clin. Rehabil. 2020, 34, 1378–1390. [Google Scholar] [CrossRef]
- Van Cant, J.; Dawe-Coz, A.; Aoun, E.; Esculier, J.F. Quadriceps strengthening with blood flow restriction for the rehabilitation of patients with knee conditions: A systematic review with meta-analysis. J. Back Musculoskelet. Rehabil. 2020, 33, 529–544. [Google Scholar] [CrossRef]
- Bobes Alvarez, C.; Issa-Khozouz Santamaria, P.; Fernandez-Matias, R.; Pecos-Martín, D.; Achalandabaso-Ochoa, A.; Fernández-Carnero, S.; Martínez-Amat, A.; Gallego-Izquierdo, T. Comparison of Blood Flow Restriction Training versus Non-Occlusive Training in Patients with Anterior Cruciate Ligament Reconstruction or Knee Osteoarthritis: A Systematic Review. J. Clin. Med. 2020, 10, 68. [Google Scholar] [CrossRef]
- Cuyul-Vasquez, I.; Leiva-Sepulveda, A.; Catalan-Medalla, O.; Araya-Quintanilla, F.; Gutierrez-Espinoza, H. The addition of blood flow restriction to resistance exercise in individuals with knee pain: A systematic review and meta-analysis. Braz. J. Phys. Ther. 2020, 24, 465–478. [Google Scholar] [CrossRef]
- Cerqueira, M.S.; Do Nascimento, J.D.S.; Maciel, D.G.; Barboza, J.A.M.; De Brito Vieira, W.H. Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: A systematic review. J. Sport Health Sci. 2020, 9, 152–159. [Google Scholar] [CrossRef]
- Beckwee, D.; Delaere, A.; Aelbrecht, S.; Baert, V.; Beaudart, C.; Bruyere, O.; de Saint-Hubert, M.; Bautmans, I. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J. Nutr. Health Aging 2019, 23, 494–502. [Google Scholar] [CrossRef]
- Mattar, M.A.; Gualano, B.; Perandini, L.A.; Shinjo, S.K.; Lima, F.R.; Sá-Pinto, A.L.; Roschel, H. Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis. Arthritis Res. Ther. 2014, 16, 473. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.; Davis, M.D.; Mikesky, A.E. Efficacy of Blood Flow-Restricted Low-Load Resistance Training For Quadriceps Strengthening in Men at Risk of Symptomatic Knee Osteoarthritis. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.A.; Williams, G.N.; Davis, M.C.; Wallace, R.B.; Mikesky, A.E. Efficacy of blood flow-restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PMR 2015, 7, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Bryk, F.F.; Dos Reis, A.C.; Fingerhut, D.; Araujo, T.; Schutzer, M.; de Paula Leite, R.; Duarte Jr, A.; Fukuda, T.Y. Exercises with partial vascular occlusion in patients with knee osteoarthritis: A randomized clinical trial. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, R.B.; Gualano, B.; Rodrigues, R.; Kurimori, C.O.; Fuller, R.; Lima, F.R.; DE Sá-Pinto, A.L.; Roschel, H. Benefits of Resistance Training with Blood Flow Restriction in Knee Osteoarthritis. Med. Sci. Sport. Exerc. 2018, 50, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.A.; Roberts, L.M.; Layne, A.S.; Jaeger, B.C.; Gardner, A.K.; Sibille, K.T.; Wu, S.S.; Vincent, K.R.; Fillingim, R.B.; Manini, T.M.; et al. Blood-Flow Restriction Resistance Exercise for Older Adults with Knee Osteoarthritis: A Pilot Randomized Clinical Trial. J. Clin. Med. 2019, 8, 265. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, R.; Khan, A.A.; Ayyub, A.; Masood, Z. Impact of strengthening exercises with and without blood flow restriction on quadriceps of knee osteoarthritis patients. J. Pak. Med. Assoc. 2021, 71, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Iversen, E.; Rostad, V.; Larmo, A. Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J. Sport Health Sci. 2016, 5, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Patterson, S.D.; Haddad, F.; Hughes, L.; Patterson, S.D.; Haddad, F.; Rosenblatt, B.; Gissane, C.; McCarthy, D.; Clarke, T.; et al. Examination of the comfort and pain experienced with blood flow restriction training during post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A UK National Health Service trial. Phys. Ther. Sport 2019, 39, 90–98. [Google Scholar] [CrossRef]
- Hughes, L.; Rosenblatt, B.; Haddad, F.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B.; Patterson, S.D. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sport. Med. 2019, 49, 1787–1805. [Google Scholar] [CrossRef]
- Curran, M.T.; Bedi, A.; Mendias, C.L.; Wojtys, E.M.; Kujawa, M.V.; Palmieri-Smith, R.M. Blood Flow Restriction Training Applied With High-Intensity Exercise Does Not Improve Quadriceps Muscle Function After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Am. J. Sport. Med. 2020, 48, 825–837. [Google Scholar] [CrossRef]
- Kilgas, M.A.; Lytle, L.L.M.; Drum, S.N.; Elmer, S.J. Exercise with Blood Flow Restriction to Improve Quadriceps Function Long After ACL Reconstruction. Int. J. Sport. Med. 2019, 40, 650–656. [Google Scholar] [CrossRef] [Green Version]
- Zargi, T.; Drobnic, M.; Strazar, K.; Kacin, A. Short-Term Preconditioning with Blood Flow Restricted Exercise Preserves Quadriceps Muscle Endurance in Patients After Anterior Cruciate Ligament Reconstruction. Front. Physiol. 2018, 9, 1150. [Google Scholar] [CrossRef] [Green Version]
- Giles, L.; Webster, K.E.; McClelland, J.; Cook, J.L. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: A double-blind randomised trial. Br. J. Sport. Med. 2017, 51, 1688–1694. [Google Scholar] [CrossRef]
- Constantinou, A.; Mamais, I.; Papathanasiou, G.; Lamnisos, D.; Stasinopoulos, D. Comparing hip and knee focused exercises versus hip and knee focused exercises with the use of blood flow restriction training in adults with patellofemoral pain: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2022, 58, 225–235. [Google Scholar] [CrossRef]
- Korakakis, V.; Whiteley, R.; Giakas, G. Low load resistance training with blood flow restriction decreases anterior knee pain more than resistance training alone. A pilot randomised controlled trial. Phys. Ther. Sport 2018, 34, 121–128. [Google Scholar] [CrossRef]
- Tennent, D.J.; Hylden, C.M.; Johnson, A.E.; Burns, T.C.; Wilken, J.M.; Owens, J.G. Blood Flow Restriction Training After Knee Arthroscopy: A Randomized Controlled Pilot Study. Clin. J. Sport Med. 2017, 27, 245–252. [Google Scholar] [CrossRef]
- Jonsson, A.B.; Johansen, C.V.; Rolving, N.; Pfeiffer-Jensen, M. Feasibility and estimated efficacy of blood flow restricted training in female patients with rheumatoid arthritis: A randomized controlled pilot study. Scand. J. Rheumatol. 2021, 50, 169–177. [Google Scholar] [CrossRef]
- Rodrigues, R.; Ferraz, R.B.; Kurimori, C.O.; Guedes, L.K.; Lima, F.R.; de Sa-Pinto, A.L.; Gualano, B.; Roschel, H. Low-Load Resistance Training with Blood-Flow Restriction in Relation to Muscle Function, Mass, and Functionality in Women with Rheumatoid Arthritis. Arthritis Care Res. 2020, 72, 787–797. [Google Scholar] [CrossRef]
- Noyes, F.R.; Barber-Westin, S.D.; Sipes, L. Blood Flow Restriction Training Can Improve Peak Torque Strength in Chronic Atrophic Postoperative Quadriceps and Hamstrings Muscles. Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 2860–2869. [Google Scholar] [CrossRef]
- Lipker, L.A.; Persinger, C.R.; Michalko, B.S.; Durall, C.J. Blood Flow Restriction Therapy Versus Standard Care for Reducing Quadriceps Atrophy After Anterior Cruciate Ligament Reconstruction. J. Sport Rehabil. 2019, 28, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Yokokawa, Y.; Hongo, M.; Urayama, H.; Nishimura, T.; Kai, I. Effects of low-intensity resistance exercise with vascular occlusion on physical function in healthy elderly people. Biosci. Trends 2008, 2, 117–123. [Google Scholar]
- Karabulut, M.; Abe, T.; Sato, Y.; Bemben, M.G. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur. J. Appl. Physiol. 2010, 108, 147–155. [Google Scholar] [CrossRef]
- Ozaki, T.; Muramatsu, R.; Sasai, M.; Ozaki, T.; Muramatsu, R.; Sasai, M.; Yamamoto, M.; Kubota, Y.; Fujinaka, T.; Yoshimine, T. The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Sci. Rep. 2016, 6, 25893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, S.D.; Ferguson, R.A. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J. Aging Phys. Act. 2011, 19, 201–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letieri, R.V.; Teixeira, A.M.; Furtado, G.E.; Lamboglia, C.G.; Rees, J.L.; Gomes, B.B. Effect of 16weeks of resistance exercise and detraining comparing two methods of blood flow restriction in muscle strength of healthy older women: A randomized controlled trial. Exp. Gerontol. 2018, 114, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.P.; Neto, G.R.; Loenneke, J.P.; Bemben, M.G.; Laurentino, G.C.; Batista, G.; Silva, J.C.; Freitas, E.D.; Sousa, M.S. The effects of water-based exercise in combination with blood flow restriction on strength and functional capacity in post-menopausal women. Age 2015, 37, 110. [Google Scholar] [CrossRef]
- Clarkson, M.J.; Conway, L.; Warmington, S.A. Blood flow restriction walking and physical function in older adults: A randomized control trial. J. Sci. Med. Sport 2017, 20, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Vechin, F.C.; Libardi, C.A.; Conceicao, M.S.; Damas, F.R.; Lixandrão, M.E.; Berton, R.P.; Tricoli, V.A.; Roschel, H.A.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.; et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J. Strength Cond. Res. 2015, 29, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Fukumura, K.; Fukuda, T.; Yasuda, T.; Fukumura, K.; Fukuda, T.; Uchida, Y.; Iida, H.; Meguro, M.; Sato, Y.; et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults. Scand. J. Med. Sci. Sport. 2014, 24, 799–806. [Google Scholar] [CrossRef]
- Yasuda, T.; Fukumura, K.; Tomaru, T.; Nakajima, T. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women. Oncotarget 2016, 7, 33595–33607. [Google Scholar] [CrossRef] [Green Version]
- Krieger, J.; Sims, D.; Wolterstorff, C. A Case of Rhabdomyolysis Caused by Blood Flow-Restricted Resistance Training. J. Spec. Oper. Med. Summer 2018, 18, 16–17. [Google Scholar] [CrossRef]
- Hylden, C.; Burns, T.; Stinner, D.; Owens, J. Blood flow restriction rehabilitation for extremity weakness: A case series. J. Spec. Oper. Med. 2015, 15, 50–56. [Google Scholar] [CrossRef]
- Lambert, B.; Hedt, C.; Daum, J.; Taft, C.; Chaliki, K.; Epner, E.; McCulloch, P. Blood Flow Restriction Training for the Shoulder: A Case for Proximal Benefit. Am. J. Sport. Med. 2021, 49, 2716–2728. [Google Scholar] [CrossRef]
- Larsen, P.; Platzer, O.J.; Lollesgaard, L.; Larsen, P.; Platzer, O.J.; Lollesgaard, L.; Pedersen, S.K.; Nielsen, P.K.; Rathleff, M.S.; Bandholm, T.; et al. Blood-flow restricted exercise following ankle fractures—A feasibility study. Foot Ankle Surg. 2021, 28, 726–731. [Google Scholar] [CrossRef]
- Jorgensen, S.L.; Mechlenburg, I. Effects of Low-Load Blood-Flow Restricted Resistance Training on Functional Capacity and Patient-Reported Outcome in a Young Male Suffering from Reactive Arthritis. Front. Sport. Act. Living 2021, 3, 798902. [Google Scholar] [CrossRef]
- Noto, T.; Hashimoto, G.; Takagi, T.; Awaya, T.; Araki, T.; Shiba, M.; Iijima, R.; Hara, H.; Moroi, M.; Nakamura, M.; et al. Paget-Schroetter Syndrome Resulting from Thoracic Outlet Syndrome and KAATSU Training. Intern Med. 2017, 56, 2595–2601. [Google Scholar] [CrossRef]
- Santos, A.R.; Neves, M.T., Jr.; Gualano, B.; Laurentino, G.C.; Lancha Jr, A.H.; Ugrinowitsch, C.; Lima, F.R.; Aoki, M.S. Blood flow restricted resistance training attenuates myostatin gene expression in a patient with inclusion body myositis. Biol. Sport 2014, 31, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Gaunder, C.L.; Hawkinson, M.P.; Tennent, D.J.; Tubb, C.C. Occlusion training: Pilot study for postoperative lower extremity rehabilitation following primary total knee arthroplasty. U.S. Army Med. Dep. J. 2017, 2, 39–43. [Google Scholar]
- Loenneke, J.P.; Young, K.C.; Wilson, J.M.; Andersen, J.C. Rehabilitation of an osteochondral fracture using blood flow restricted exercise: A case review. J. Bodyw. Mov. Ther. 2013, 17, 42–45. [Google Scholar] [CrossRef]
- Mason, J.S.; Crowell, M.S.; Brindle, R.A.; Dolbeer, J.A.; Miller, E.M.; Telemeco, T.A.; Goss, D.L. The Effect of Blood Flow Restriction Training on Muscle Atrophy Following Meniscal Repair or Chondral Restoration Surgery in Active Duty Military: A Randomized Controlled Trial. J. Sport Rehabil. 2021, 31, 77–84. [Google Scholar] [CrossRef]
- Brightwell, B.D.; Stone, A.; Li, X.; Hardy, P.; Thompson, K.; Noehren, B.; Jacobs, C. Blood flow Restriction training After patellar INStability (BRAINS Trial). Trials 2022, 23, 88. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Timmons, M.K.; Dolbow, D.R.; Bengel, J.; Fugate-Laus, K.C.; Michener, L.A.; Gater, D.R. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur. J. Appl. Physiol. 2016, 116, 1231–1244. [Google Scholar] [CrossRef]
- Fini, E.M.; Salimian, M.; Ahmadizad, S. Responses of platelet CD markers and indices to resistance exercise with and without blood flow restriction in patients with type 2 diabetes. Clin. Hemorheol. Microcirc. 2021, 80, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Saatmann, N.; Zaharia, O.P.; Loenneke, J.P.; Roden, M.; Pesta, D.H. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends Endocrinol. Metab. 2021, 32, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Correa, H.L.; Neves, R.V.P.; Deus, L.A.; Maia, B.C.H.; Maya, A.T.; Tzanno-Martins, C.; Souza, M.K.; Silva, J.A.B.; Haro, A.S.; Costa, F.; et al. Low-load resistance training with blood flow restriction prevent renal function decline: The role of the redox balance, angiotensin 1-7 and vasopressin. Physiol. Behav. 2021, 230, 113295. [Google Scholar] [CrossRef] [PubMed]
- de Deus, L.A.; Neves, R.V.P.; Correa, H.L.; Reis, A.L.; Honorato, F.S.; Silva, V.L.; de Araújo, T.B.; Souza, M.K.; Sousa, C.V.; Simões, H.G. Improving the prognosis of renal patients: The effects of blood flow-restricted resistance training on redox balance and cardiac autonomic function. Exp. Physiol. 2021, 106, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.R.; Polito, M.D. Haemodynamic responses during resistance exercise with blood flow restriction in hypertensive subjects. Clin. Physiol. Funct. Imaging 2016, 36, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Madarame, H.; Kurano, M.; Fukumura, K.; Fukuda, T.; Nakajima, T. Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: A pilot study. Clin. Physiol. Funct. Imaging 2013, 33, 11–17. [Google Scholar] [CrossRef]
- Ogawa, H.; Nakajima, T.; Shibasaki, I.; Nasuno, T.; Kaneda, H.; Katayanagi, S.; Ishizaka, H.; Mizushima, Y.; Uematsu, A.; Yasuda, T.; et al. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J. Clin. Med. 2021, 10, 547. [Google Scholar] [CrossRef]
- Wooten, S.V.; Fleming, R.Y.D.; Wolf, J.S., Jr.; Stray-Gundersen, S.; Bartholomew, J.B.; Mendoza, D.; Stanforth, P.R.; Stanforth, D.; Hernandez, L.M.; Tanaka, H. Prehabilitation program composed of blood flow restriction training and sports nutrition improves physical functions in abdominal cancer patients awaiting surgery. Eur. J. Surg. Oncol. 2021, 47, 2952–2958. [Google Scholar] [CrossRef]
- Lopez-Garzon, M.; Cantarero-Villanueva, I.; Legeren-Alvarez, M.; Gallart-Aragón, T.; Postigo-Martin, P.; González-Santos, Á.; Lozano-Lozano, M.; Martín-Martín, L.; Ortiz-Comino, L.; Castro-Martín, E.; et al. Prevention of Chemotherapy-Induced Peripheral Neuropathy with PRESIONA, a Therapeutic Exercise and Blood Flow Restriction Program: A Randomized Controlled Study Protocol. Phys. Ther. 2022, 102, pzab282. [Google Scholar] [CrossRef]
- Barbalho, M.; Rocha, A.C.; Seus, T.L.; Raiol, R.; Del Vecchio, F.B.; Coswig, V.S. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: A within-patient randomized trial. Clin. Rehabil. 2019, 33, 233–240. [Google Scholar] [CrossRef]
- De Campos Biazon, T.M.P.; Libardi, C.A.; Junior, J.C.B.; Caruso, F.R.; da Silva Destro, T.R.; Molina, N.G.; Borghi-Silva, A.; Mendes, R.G. The effect of passive mobilization associated with blood flow restriction and combined with electrical stimulation on cardiorespiratory safety, neuromuscular adaptations, physical function, and quality of life in comatose patients in an ICU: A randomized controlled clinical trial. Trials 2021, 22, 969. [Google Scholar] [CrossRef]
- Centner, C.; Lauber, B.; Seynnes, O.R.; Jerger, S.; Sohnius, T.; Gollhofer, A.; Konig, D. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. J. Appl. Physiol. 2019, 127, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
- Centner, C.; Jerger, S.; Lauber, B.; Seynnes, O.; Friedrich, T.; Lolli, D.; Gollhofer, A.; König, D. Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Med. Sci. Sport. Exerc. 2021, 54, 582–589. [Google Scholar] [CrossRef]
- Kubo, K.; Komuro, T.; Ishiguro, N.; Tsunoda, N.; Sato, Y.; Ishii, N.; Kanehisa, H.; Fukunaga, T. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J. Appl. Biomech. 2006, 22, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Chulvi-Medrano, I.; Picon-Martinez, M.; Cortell-Tormo, J.M.; Tortosa-Martinez, J.; Alonso-Aubin, D.A.; Alakhdar, Y. Different Time Course of Recovery in Achilles Tendon Thickness After Low-Load Resistance Training With and Without Blood Flow Restriction. J. Sport Rehabil. 2020, 30, 300–305. [Google Scholar] [CrossRef]
- Gavanda, S.; Isenmann, E.; Schloder, Y.; Roth, R.; Freiwald, J.; Schiffer, T.; Geisler, S.; Behringer, M. Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low-load strength training: A randomized controlled trial. PLoS ONE 2020, 15, e0235377. [Google Scholar] [CrossRef]
- Brumitt, J.; Hutchison, M.K.; Kang, D.; Klemmer, Z.; Stroud, M.; Cheng, E.; Cayanan, N.P.; Shishido, S. Blood Flow Restriction Training for the Rotator Cuff: A Randomized Controlled Trial. Int. J. Sport. Physiol. Perform. 2020, 15, 1175–1180. [Google Scholar] [CrossRef]
- Picon-Martinez, M.; Chulvi-Medrano, I.; Cortell-Tormo, J.M.; Alonso-Aubin, D.A.; Alakhdar, Y.; Laurentino, G. Acute Effects of Resistance Training with Blood Flow Restriction on Achilles Tendon Thickness. J. Hum. Kinet. 2021, 78, 101–109. [Google Scholar] [CrossRef]
- Canfer, R.J.; Chaudry, S.; Miller, S.C. Thermographic assessment of the immediate and short term-effects of blood flow restriction exercise on Achilles tendon skin temperature. Phys. Ther. Sport 2021, 49, 171–177. [Google Scholar] [CrossRef]
- Holm, C.; Kjaer, M.; Eliasson, P. Achilles tendon rupture-treatment and complications: A systematic review. Scand. J. Med. Sci. Sport. 2015, 25, e1–e10. [Google Scholar] [CrossRef]
- Nyyssonen, T.; Luthje, P.; Kroger, H. The increasing incidence and difference in sex distribution of Achilles tendon rupture in Finland in 1987–1999. Scand. J. Surg. 2008, 97, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.; Zellers, J.A.; Kjaer, I.L.; Silbernagel, K.G.; Rathleff, M.S. Resistance Exercises in Early Functional Rehabilitation for Achilles Tendon Ruptures Are Poorly Described: A Scoping Review. J. Orthop. Sport. Phys. Ther. 2020, 50, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Wentzell, M. Post-operative rehabilitation of a distal biceps brachii tendon reattachment in a weightlifter: A case report. J. Can. Chiropr. Assoc. 2018, 62, 193–201. [Google Scholar] [PubMed]
- Yow, B.G.; Tennent, D.J.; Dowd, T.C.; Loenneke, J.P.; Owens, J.G. Blood Flow Restriction Training After Achilles Tendon Rupture. J. Foot Ankle Surg. 2018, 57, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Cuddeford, T.; Brumitt, J. In-Season Rehabilitation Program using Blood Flow Restriction Therapy for Two Decathletes with Patellar Tendinopathy: A Case Report. Int. J. Sport. Phys. Ther. 2020, 15, 1184–1195. [Google Scholar] [CrossRef]
- Sata, S. Kaatsu training for patella tendinitis patient. Int. J. KAATSU Train. Res. 2005, 1, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Skovlund, S.V.; Aagaard, P.; Larsen, P.; Svensson, R.B.; Kjaer, M.; Magnusson, S.P. The effect of low-load resistance training with blood flow restriction on chronic patellar tendinopathy—A case series. Transl. Sport. Med. 2020, 3, 342–352. [Google Scholar] [CrossRef]
- Burton, I.; McCormack, A. Autoregulated and individualised resistance training versus predetermined and standardised resistance training in tendinopathy: A systematic review protocol. Musculoskelet. Care 2021, 19, 533–539. [Google Scholar] [CrossRef]
- Challoumas, D.; Pedret, C.; Biddle, M.; Ng, N.Y.B.; Kirwan, P.; Cooper, B.; Nicholas, P.; Wilson, S.; Clifford, C.; Millar1, N.L. Management of patellar tendinopathy: A systematic review and network meta-analysis of randomised studies. BMJ Open Sport Exerc. Med. 2021, 7, e001110. [Google Scholar] [CrossRef]
- Stanish, W.D.; Rubinovich, R.M.; Curwin, S. Eccentric exercise in chronic tendinitis. Clin. Orthop. Relat. Res. 1986, 208, 65–68. [Google Scholar] [CrossRef]
- Alfredson, H.; Pietila, T.; Jonsson, P.; Lorentzon, R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am. J. Sport. Med. 1998, 26, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Malliaras, P.; Barton, C.J.; Reeves, N.D.; Langberg, H. Achilles and patellar tendinopathy loading programmes: A systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sport. Med. 2013, 43, 267–286. [Google Scholar] [CrossRef]
- Saithna, A.; Gogna, R.; Baraza, N.; Modi, C.; Spencer, S. Eccentric Exercise Protocols for Patella Tendinopathy: Should we Really be Withdrawing Athletes from Sport? A Systematic Review. Open Orthop. J. 2012, 6, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Young, M.A.; Cook, J.L.; Purdam, C.R.; Kiss, Z.S.; Alfredson, H. Eccentric decline squat protocol offers superior results at 12 months compared with traditional eccentric protocol for patellar tendinopathy in volleyball players. Br. J. Sport. Med. 2005, 39, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Visnes, H.; Bahr, R. The evolution of eccentric training as treatment for patellar tendinopathy (jumper’s knee): A critical review of exercise programmes. Br. J. Sport. Med. 2007, 41, 217–223. [Google Scholar] [CrossRef]
- Ruffino, D.; Malliaras, P.; Marchegiani, S.; Campana, V. Inertial flywheel vs heavy slow resistance training among athletes with patellar tendinopathy: A randomised trial. Phys. Ther. Sport 2021, 52, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Tesch, P.A. Effects of In-Season Inertial Resistance Training With Eccentric Overload in a Sports Population at Risk for Patellar Tendinopathy. J. Strength Cond. Res. 2016, 30, 1834–1842. [Google Scholar] [CrossRef]
- Romero-Rodriguez, D.; Gual, G.; Tesch, P.A. Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: A case-series study. Phys. Ther. Sport 2011, 12, 43–48. [Google Scholar] [CrossRef]
- Silbernagel, K.G.; Hanlon, S.; Sprague, A. Current Clinical Concepts: Conservative Management of Achilles Tendinopathy. J. Athl. Train. 2020, 55, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Silbernagel, K.G.; Thomee, R.; Eriksson, B.I.; Karlsson, J. Continued sports activity, using a pain-monitoring model, during rehabilitation in patients with Achilles tendinopathy: A randomized controlled study. Am. J. Sport. Med. 2007, 35, 897–906. [Google Scholar] [CrossRef]
- Lim, H.Y.; Wong, S.H. Effects of isometric, eccentric, or heavy slow resistance exercises on pain and function in individuals with patellar tendinopathy: A systematic review. Physiother. Res. Int. 2018, 23, e1721. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.C.; Travers, M.J.; Chivers, P.; Debenham, J.R.; Docking, S.I.; Rio, E.K.; Gibson, W. Efficacy of heavy eccentric calf training for treating mid-portion Achilles tendinopathy: A systematic review and meta-analysis. Br. J. Sport. Med. 2019, 53, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, L.M.; Leite, H.R.; Zwerver, J.; Henschke, N.; Branco, G.; Oliveira, V.C. How strong is the evidence that conservative treatment reduces pain and improves function in individuals with patellar tendinopathy? A systematic review of randomised controlled trials including GRADE recommendations. Br. J. Sport. Med. 2020, 54, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lasevicius, T.; Ugrinowitsch, C.; Schoenfeld, B.J.; Roschel, H.; Tavares, L.D.; De Souza, E.O.; Laurentino, G.; Tricoli, V. Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur. J. Sport Sci. 2018, 18, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Mafi, N.; Lorentzon, R.; Alfredson, H. Superior short-term results with eccentric calf muscle training compared to concentric training in a randomized prospective multicenter study on patients with chronic Achilles tendinosis. Knee Surg. Sport. Traumatol. Arthrosc. 2001, 9, 42–47. [Google Scholar] [CrossRef]
- Jonsson, P.; Alfredson, H. Superior results with eccentric compared to concentric quadriceps training in patients with jumper’s knee: A prospective randomised study. Br. J. Sport. Med. 2005, 39, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Peterson, M.; Butler, S.; Eriksson, M.; Svardsudd, K. A randomized controlled trial of eccentric vs. concentric graded exercise in chronic tennis elbow (lateral elbow tendinopathy). Clin. Rehabil. 2014, 28, 862–872. [Google Scholar] [CrossRef]
- Sayana, M.K.; Maffulli, N. Eccentric calf muscle training in non-athletic patients with Achilles tendinopathy. J. Sci. Med. Sport 2007, 10, 52–58. [Google Scholar] [CrossRef]
- Breda, S.J.; Oei, E.H.G.; Zwerver, J.; Visser, E.; Waarsing, E.; Krestin, G.P. Effectiveness of progressive tendon-loading exercise therapy in patients with patellar tendinopathy: A randomised clinical trial. Br. J. Sport. Med. 2021, 55, 501–509. [Google Scholar] [CrossRef]
- Agergaard, A.S.; Svensson, R.B.; Malmgaard-Clausen, N.M.; Couppé, C.; Hjortshoej, M.H.; Doessing, S.; Kjaer, M.; Magnusson, S.P. Clinical Outcomes, Structure, and Function Improve with Both Heavy and Moderate Loads in the Treatment of Patellar Tendinopathy: A Randomized Clinical Trial. Am. J. Sport. Med. 2021, 49, 982–993. [Google Scholar] [CrossRef]
- Sprague, A.L.; Couppe, C.; Pohlig, R.T.; Snyder-Mackler, L.; Silbernagel, K.G. Pain-guided activity modification during treatment for patellar tendinopathy: A feasibility and pilot randomized clinical trial. Pilot Feasibility Stud. 2021, 7, 58. [Google Scholar] [CrossRef]
- Rathleff, M.S.; Molgaard, C.M.; Fredberg, U.; Kaalund, S.; Andersen, K.B.; Jensen, T.T.; Aaskov, S.; Olesen, J.L. High-load strength training improves outcome in patients with plantar fasciitis: A randomized controlled trial with 12-month follow-up. Scand. J. Med. Sci. Sport. 2015, 25, e292–e300. [Google Scholar] [CrossRef]
- Riel, H.; Jensen, M.B.; Olesen, J.L.; Vicenzino, B.; Rathleff, M.S. Self-dosed and pre-determined progressive heavy-slow resistance training have similar effects in people with plantar fasciopathy: A randomised trial. J. Physiother. 2019, 65, 144–151. [Google Scholar] [CrossRef]
- Farnqvist, K.; Pearson, S.; Malliaras, P. Adaptation of Tendon Structure and Function in Tendinopathy with Exercise and Its Relationship to Clinical Outcome. J. Sport Rehabil. 2020, 29, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.M.; Scott, A. Mechanotherapy: How physical therapists’ prescription of exercise promotes tissue repair. Br. J. Sport. Med. 2009, 43, 247–252. [Google Scholar] [CrossRef]
- Murtaugh, B.; Ihm, J.M. Eccentric training for the treatment of tendinopathies. Curr. Sport. Med. Rep. 2013, 12, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Irby, A.; Gutierrez, J.; Chamberlin, C.; Thomas, S.J.; Rosen, A.B. Clinical management of tendinopathy: A systematic review of systematic reviews evaluating the effectiveness of tendinopathy treatments. Scand. J. Med. Sci. Sport. 2020, 30, 1810–1826. [Google Scholar] [CrossRef]
- Girgis, B.; Duarte, J.A. Physical therapy for tendinopathy: An umbrella review of systematic reviews and meta-analyses. Phys. Ther. Sport 2020, 46, 30–46. [Google Scholar] [CrossRef]
- Burton, I. Autoregulation in Resistance Training for Lower Limb Tendinopathy: A Potential Method for Addressing Individual Factors, Intervention Issues, and Inadequate Outcomes. Front. Physiol. 2021, 12, 704306. [Google Scholar] [CrossRef]
- Burton, I.; McCormack, A. The implementation of resistance training principles in exercise interventions for lower limb tendinopathy: A systematic review. Phys. Ther. Sport 2021, 50, 97–113. [Google Scholar] [CrossRef]
- Scarpelli, M.C.; Bergamasco, J.G.A.; Arruda, E.A.B.; Cook, S.B.; Libardi, C.A. Resistance Training with Partial Blood Flow Restriction in a 99-Year-Old Individual: A Case Report. Front. Sport. Act. Living 2021, 3, 671764. [Google Scholar] [CrossRef] [PubMed]
- Silbernagel, K.G. Does one size fit all when it comes to exercise treatment for Achilles tendinopathy? J. Orthop. Sport. Phys. Ther. 2014, 44, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, S.; Pfeifer, C.G.; Brochhausen, C.; Docheva, D. Spectrum of Tendon Pathologies: Triggers, Trails and End-State. Int. J. Mol. Sci. 2020, 21, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arampatzis, A.; Mersmann, F.; Bohm, S. Individualized Muscle-Tendon Assessment and Training. Front. Physiol. 2020, 11, 723. [Google Scholar] [CrossRef]
- Mersmann, F.; Laube, G.; Marzilger, R.; Bohm, S.; Schroll, A.; Arampatzis, A. A Functional High-Load Exercise Intervention for the Patellar Tendon Reduces Tendon Pain Prevalence During a Competitive Season in Adolescent Handball Players. Front. Physiol. 2021, 12, 626225. [Google Scholar] [CrossRef]
- Suga, T.; Dora, K.; Mok, E.; Sugimoto, T.; Tomoo, K.; Takada, S.; Hashimoto, T.; Isaka, T. Exercise adherence-related perceptual responses to low-load blood flow restriction resistance exercise in young adults: A pilot study. Physiol. Rep. 2021, 9, e15122. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Miller, R.M.; Heishman, A.D.; Aniceto, R.R.; Larson, R.; Pereira, H.M.; Bemben, D.; Bemben, M.G. The perceptual responses of individuals with multiple sclerosis to blood flow restriction versus traditional resistance exercise. Physiol. Behav. 2021, 229, 113219. [Google Scholar] [CrossRef]
- Burton, I. Autoregulated heavy slow resistance training combined with radial shockwave therapy for plantar heel pain: Protocol for a mixed-methods pilot randomised controlled trial. Musculoskelet. Care 2021, 19, 319–330. [Google Scholar] [CrossRef]
- Hansen, O.B. Effect of Blood Flow Restriction Therapy Following Achilles Rupture and Repair: A Randomized Controlled Trial. Foot Ankle Orthop. 2022, 7, 2473011421S00032. Available online: https://clinicaltrials.gov/ct2/show/NCT04492059 (accessed on 16 October 2022). [CrossRef]
- Jensen, M.H. Blood Flow Restriction Training for Treatment of Chronic Patellar Tendinopathy. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04550013 (accessed on 16 October 2022).
- Jildeh, T.R. Use of Blood Flow Restriction (BFR) Therapy in Post-Operative Rehabilitation Following Distal Biceps Tendon Repair. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04503421 (accessed on 16 October 2022).
- Palhano, P. Blood Flow Restriction Exercise in the Treatment of Lateral Epicondylalgia vs. Traditional Treatment. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04607356 (accessed on 16 October 2022).
- Lear, A. A Randomized Controlled Trial of Blood Flow Restriction Plus Conventional Physical Therapy vs. Conventional Physical Therapy Alone in the Treatment of Lateral Epicondylitis. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03978897 (accessed on 16 October 2022).
- Kara, D. The Effect of Blood Flow Restriction Training on Muscle Thickness and Symptoms in Patients with Rotator Cuff Tendinopathy. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04333784 (accessed on 16 October 2022).
- Banffy, M.B. The Effects of Cross-Education and Blood Flow Restriction Study on Patients Undergoing Shoulder Arthroscopy. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04470570 (accessed on 16 October 2022).
Training Parameter | Guidelines |
---|---|
Frequency | 2–3 times a week (>3 weeks) or 1–2 times per day (1–3 weeks) |
Load | 20–40% 1-RM |
Restriction time | 5–10 min per exercise (reperfusion between exercises) |
Type | Small and large muscle groups (arms and legs/unilateral or bilateral) |
Sets | 2–4 |
Cuff | 5 (small), 10 or 12 (medium), 17 or 18 cm (large) |
Repetitions | (75 repetitions)—30 _ 15 _ 15 _ 15, or sets to failure |
Pressure | 40–80% AOP |
Rest between sets | 30–60 s |
Restriction form | Continuous or intermittent |
Execution speed | 1–2 s (concentric and eccentric) |
Execution | Until concentric failure or when planned rep scheme is completed |
Author, Study Design, Population | Intervention, Exercises, Duration | Training Parameters | Outcome Measures | Outcomes, Results |
---|---|---|---|---|
Centner et al. 2019 [69] RCT, n = 55, Healthy Achilles tendon | 1.LL-BFRT: standing and seated calf raises (20–35% 1RM) 2. High load RT (70–85% 1RM) 3. Control, 14 weeks | Sets: 3, Reps; 6–12, Freq: 3 × WK, Prog: increase resistance (5% of 1rm every 4 WK, 20–35%), Int: 20–35% of 1RM. Rest: 1 min between sets, 3 min between exercises. Occlusion pressure: 50% at proximal thigh | Tendon and muscle properties (US), isometric strength (MVC—isokinetic dynamometer). | Both groups had comparable increases in tendon stiffness and CSA, gastrocnemius muscle CSA and strength. No changes in control group. |
Centner et al. 2021 [74] RCT, n = 29, Healthy patellar tendon | 1.LL-BFRT: bilateral leg press and knee extension, standing and seated calf raises (20–35% 1RM) 2. High load RT (70–85% 1RM), 14 weeks | Sets: 4, Reps: 30, 15, 15, 15, Freq: 3 × WK, Prog: increase resistance (5% of 1rm every 4 WK, 20–35%), Int: 20–35% of 1RM. Rest: 1 min between sets, 3 min between exercises. Occlusion pressure: 50% at proximal thigh | Tendon and muscle properties (US and MRI), strength (1-RM). | Both groups had comparable increases in tendon stiffness and CSA, muscle mass and strength, knee extension 1RM was higher in BFRT group. |
Chulvi-Medrano et al. 2020 [70] RCT, n = 56, Healthy Achilles tendon | 1. LL BFRT: plantarflexion 2. LL RT, single session | Sets: 3, Reps; 15, Freq: single session, Prog: NR, Int: 30% of 1RM. Rest: 30 s between sets. Occlusion pressure: 30% at proximal thigh | Tendon thickness (US) | BFRT group had significantly greater decrease in tendon thickness compared to LL-RT, immediately and 24 h after exercise. |
Gavanda et al. 2020 [72] RCT, n = 21, Healthy achilles tendon | 1. LL BFRT: plantarflexion 2. LL RT, 6 weeks | Sets: 4, Reps; to muscular failure, Freq: 2 × WK, Prog: occlusion pressure increased every 4 WKs, Int: 30% of 1RM, Rest: 30 s between sets. Occlusion pressure: 60% below patella. | Calf volume, gastrocnemius muscle thickness (US), maximal hopping test for leg stiffness, 1RM smith machine calf raise, pain (VAS) | Leg (tendon) stiffness and calf volume did not change, VAS, 1RM and muscle thickness improved equally in both groups. |
Kubo 2006 [76], Cohort, n = 9, Healthy patellar tendon and VL aponeurosis | 1. LL BFRT (20% of 1RM): knee extension 2. HL RT (80% of 1RM), 12 weeks | Sets: 4, Reps; 25, 18, 15, 12, Freq: 3 × WK, Prog: NR, Int: 20% of 1RM. Rest: 30 s between sets. Occlusion pressure: 37.7% at proximal thigh | knee extension torque (MVC—dynamometer)) Tension of VL, calculated from MVC, and muscle volume mmobilizat. Stiffness of VL tendon (US) during isometric knee extension. | Both groups significantly increased MVC and muscle volume of quadriceps femoris. Specific tension of VL increased significantly 5.5% for HL, but not for LL. Tension and tendon properties were found to remain following LL BFRT, whereas they increased) significantly after HL RT. |
Picon-martinez et al. 2021 [71] RCT, n = 52, healthy achilles tendon | 1. LL BFRT (30% 1RM): plantarflexion 2. LL RT (30% 1RM) 3. HL RT (75% 1RM), single session | Sets: 4, Reps; 30, 15, 15, 15, Freq: single session, Prog NR, Int: 30% of 1RM, Rest: 30 s between sets.) Occlusion pressure: 30% under knee joint | Achilles tendon thickness (US): immediately, 60 min and 24 h after training. | Achilles tendon thickness was significantly reduced immediately after, 60 min and 24 h post-LL BFRT, unchanged in other groups. |
Brumitt et al. 2020 [75] RCT, n = 46, healthy supraspinatus tendon | 1. LL BFRT: side-lying external rotation 2. LL RT, 8 weeks | Sets: 4, Reps; 30, 15, 15, 15, Freq: 2 × WK, Prog: NR, Int: 30% of 1RM. Rest: 30 s between sets.) Occlusion pressure: 50% at proximal upper arm | Rotator cuff strength (dynamometry), supraspinatus tendon thickness (US) | BFRT did not augment rotator cuff strength gains or tendon thickness when compared to RT. Both groups significantly increased rotator cuff strength and tendon size. |
Canfer et al. 2021 [73] Cross sectional, n = 12, healthy achilles tendon | 1. LL BFRT: bodyweight SL heel raise 2. LL RT | Sets: 4, Reps; 30, 15, 15, 15, Freq: single session, Prog: NR, Int: 30% of 1RM) Rest: 30 s between sets. Occlusion pressure: 80% at distal lower leg. | Thermograms to assess Achilles tendon skin temperature (Tskin) | Region specific changes in Tskin were found, with greater and longer reductions at the Achilles insertion following BFRT. |
Author, Study Design, Population | Intervention, Exercises, Duration | Training Parameters | Outcome Measures | Outcomes, Results |
---|---|---|---|---|
Wentzell 2018 [67], Case report, n = 1, Biceps tendon rupture | Manual therapy, laser therapy, progressive strength training including LL BFRT: Isometric forearm pronation and supination, elbow flexion and extension 14 weeks | Sets: 4, Reps: 30,15,15,15, Freq: 7 × WK, Prog: increase resistance (1.5–4 lbs) difficulty and ROM, Int: 10–30% MVC. Occlusion pressure: 80 mmHg at proximal arm. | Pain (NPRS), Function (DASH, Mayo Elbow Performance Index score. | Patient improved clinical outcomes and returned to preinjury activity (weightlifter). |
Yow et al. 2018 [68] Case report, n = 2, Achilles tendon rupture | LL BFRT: Leg press, calf press, 6 weeks | Sets: 4, Reps: 30, 15, 15, 15, Freq: NR, Prog: NR, Int: 30% of 1RM. Occlusion pressure: 80%, 180 mm Hg at proximal thigh. | Strength and power (isokinetic testing—Biodex system). | Patients improved strength and power and returned to sports. |
Author, Study Design, Population | Intervention, Exercises, Duration | Training Parameters | Outcome Measures | Outcomes, Results |
---|---|---|---|---|
Skovlund et al. 2020 [64], Case series, n = 7, Patellar tendinopathy | 1. LL-BFRT: SL leg press, knee extension, 3 weeks | Sets: 6, Reps: 5–30, Freq: 3 × WK, Prog: increase volume based on pain response, Int: 10RM, (30% of 1RM). Maximum 105 reps per session. Occlusion pressure: 120 mm Hg at proximal thigh | Pain (NRS-P, SLDS), Function (VISA-P) Tendon vascularity (US), Knee extensor strength (MVC—static dynamometry) | Intervention was effective for improving clinical outcomes and strength. Pain with SLDS reduced by 50%. Tendon vascularity diminished by 31%. No changes in tendon thickness. |
Cuddeford et al. 2020 [66] Case report, n = 1, Patellar tendinopathy | 1. LL-BFRT: SL leg press, SLDS, 12 weeks | Sets: 4, Reps: 15–30; Freq 2 × WK: Prog: increase resistance (10 lbs Inc.), Int: 15–30RM (1RM testing). Occlusion pressure: 80% at proximal lower limb | Pain (VAS), Function (VISA-P), Tendon size (US), hip and knee strength (dynamometry, SL leg press 1RM) | Patients improved clinical outcomes and strength and returned to sports activity. Improvements in tendon thickness and resolution of hypoechoic region |
Sata 2005 [65], Case report, n = 1, Patellar tendinopathy | 1. LL-BFRT: straight leg raises, hip abduction and adduction, calf raise, squat, crunch, back extension, basketball shooting, 3 weeks | Sets: 3, Reps; 15, Freq: 5–6 × WK, Prog: NR Int: 15rm (30% of 1RM). Occlusion pressure range: 160–180 mmHg at proximal lower limb. | MRI (signal intensity). Thigh circumference | Patient improved clinical outcomes and returned to playing basketball MRI signal intensity was reduced, and thigh circumference was increased. |
Characteristics of Resistance Training Protocols in Lower Limb Tendinopathy | |||||||
---|---|---|---|---|---|---|---|
Protocol | Tendinopathy | Exercise Type | Sets, Repetitions | Frequency | Duration | Progression | Pain |
Stanish and Curwin | Achilles | Eccentric- concentric, power | 3, 10-20 | Daily | 12 weeks | Speed then load | Enough load to be painful in 3rd set |
Alfredson | Achilles | Eccentric | 3, 15 | 2 × daily | 12 weeks | Increase load as able (backpack) | Enough load to achieve moderate pain |
Silbernagel | Achilles | Eccentric-concentric, balance, plyometric | Various | Daily | 12 weeks | Volume, type of exercise | Acceptable within defined limits |
Beyer | Achilles | Isotonic (HSRT) | 3-4, 15-6 | 3 × week | 12 weeks | 15-6RM, increase load as able (external weight machine) | Acceptable if not worse after exercise |
Rathleff | Plantar heel | Isotonic (HSRT) | 3-5, 12-8 | 3 × week | 12 weeks | 12-8RM, Increase load as able (backpack) | Acceptable if not worse after exercise |
Kongsgaard | Patellar | Isotonic (HSRT) | 4, 15-6 | 3 × week | 12 weeks | 15-6RM, Increase load as able (external weight machine) | Acceptable if not worse after exercise |
Ruffino | Patellar | Eccentric overload (inertial flywheel) | 4, 12 | 1 × week | 12 weeks | 8RM, increase resistance (flywheel devices) | Acceptable within defined limits |
Skovlund | Patellar | Isotonic (BFRT) | 6, 5-30 (30, 25, 20, 15, 10, 5) | 3 × week | 3 weeks | Increase volume as able (external weight machine) | Acceptable within defined limits |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burton, I. Blood Flow Restriction Training for Tendinopathy Rehabilitation: A Potential Alternative to Traditional Heavy-Load Resistance Training. Rheumato 2023, 3, 23-50. https://doi.org/10.3390/rheumato3010003
Burton I. Blood Flow Restriction Training for Tendinopathy Rehabilitation: A Potential Alternative to Traditional Heavy-Load Resistance Training. Rheumato. 2023; 3(1):23-50. https://doi.org/10.3390/rheumato3010003
Chicago/Turabian StyleBurton, Ian. 2023. "Blood Flow Restriction Training for Tendinopathy Rehabilitation: A Potential Alternative to Traditional Heavy-Load Resistance Training" Rheumato 3, no. 1: 23-50. https://doi.org/10.3390/rheumato3010003
APA StyleBurton, I. (2023). Blood Flow Restriction Training for Tendinopathy Rehabilitation: A Potential Alternative to Traditional Heavy-Load Resistance Training. Rheumato, 3(1), 23-50. https://doi.org/10.3390/rheumato3010003