Plasmapheresis in Neonatal Lupus
Abstract
:1. Introduction
1.1. Sjögren’s Syndrome and Systemic Lupus Erythematosus
1.2. Plasmapheresis
1.3. Development of the Neonatal Immune System
1.4. Neonatal Autoimmune Syndromes and Neonatal Lupus
1.5. Cardiac Neonatal Lupus
1.6. Treatment of Congenital Heart Block
Authors | Plasmapheresis Single Agent or in Combination | Study Design and Methods | Notes/Outcomes |
---|---|---|---|
(1) Herreman et al. 1985 [68] | Combination with steroid and plasmapheresis | - Case report, n = 1 - Combined plasmapheresis and steroids in a mother with a history of prior pregnancy with an isolated complete heart block following an otherwise uncomplicated pregnancy - The fetus had severe bradycardia at 23 weeks gestation and the mother tested positive for antinuclear antibodies | - Plasmapheresis and steroid treatment did not reverse the heart block, the live infant was born otherwise without complications |
(2) Barclay et al. 1987 [69] | Combination with steroid and plasmapheresis | - Case report, n = 1 - Combined plasmapheresis and steroids in a mother with a history of prior pregnancies which resulted in early neonatal death, due to a CHB - anti-SSA/Ro titer was present at a level of 1:20 at 20 weeks gestation | - Outcome resulted in the live birth of the infant without clinically demonstrable CHB |
(3) van der Leij et al. 1994 [70] | Combination with steroid, azathioprine, and plasmapheresis | - Case report, n = 1 - Multiple agents in a mother with a history of prior pregnancy which resulted in early neonatal death, due to a CHB - anti-SSA/Ro and anti-SSB/La levels were monitored throughout the pregnancy and diminished with treatment | - Outcome resulted in the live birth of the infant without clinically demonstrable CHB |
(4) Miyakata et al. 2001 [77] | Single agent | - Prospective, n = 15 - All pregnant mothers received single agent plasmapheresis if positive anti-SSA/Ro or anti-SSB/La titer | - One case of CHB was found after plasmapheresis - No significant side effects or pregnancy complications |
(5) Zemlin et al. 2002 [71] | Combination with steroid and plasmapheresis | - Case report, n = 1 - A mother with primary Sjoegren's syndrome was treated with steroids and plasmapheresis in four singleton pregnancies | - One pregnancy resulted in miscarriage, one with fetal CHB, and two normal births by Caesarean section |
(6) Yang et al. 2005 [72] | Combination with steroid and plasmapheresis | - Case report, n = 1 - A mother with systemic lupus erythematosus and a positive anti-SSA/Ro antibody titer was given steroids, immunosuppressants, and plasmapheresis in her second pregnancy, after previously giving birth to a child with a CHB | - Though no in utero CHB was detected in the second pregnancy, the patient’s pregnancy resulted in an otherwise uncomplicated birth by Caesarean section |
(7) Makino et al. 2007 [78] | Combination with steroid | - Prospective, n = 24 - All pregnant mothers who had positive anti-52-kDa SSA/Ro and anti-48-kd SSB/La antibodies or elevated titers of anti-SSA/Ro antibody (> 1:512), were treated with steroid only or steroid in combination with plasmapheresis | - Most cases of CHB developed in patients whose mother was taking neither steroids or plasmapheresis - One case developed in a patient whose mother took both treatments |
(8) Rufatti et al. 2012 [73] | Combination with steroid, IVIG, and plasmapheresis | - Prospective cohort, n = 2 - Pregnant mothers had an in utero diagnosis of fetal CHB by echocardiography | - Congenital heart block was reversed in both fetuses - No recurrence of CHB was detected at the 8 and 29 month follow up |
(9) Di Mauro et al. 2013 [79] | Combination with steroid, IVIG, and plasmapheresis | - Case report, n = 1 - Multiple agents in an incidentally detected fetal CHB in uter,o detected by fetal echocardiography | - Mother was asymptomatic for the autoimmune disease prior to and after the fetal CHB presentation - High-titer anti-Ro/SSA was found |
(10) Rufatti et al. 2016 [80] | Combination with steroid, IVIG, and plasmapheresis | - Prospective cohort, n = 12 - Pregnant mothers had an in utero diagnosis of fetal CHB by echocardiography - All fetuses had a 2nd or 3rd degree heart block and were diagnosed in the 20th week of gestation or latter - All mothers showed progressively decreased antibody titers throughout pregnancy | - Two fetuses with a second degree heart block reverted to 1st degree, and one reverted to normal atrioventricular conduction - All six fetuses with a 3rd degree heart block remained stable throughout pregnancy |
(11) Hou et al. 2020 [76] | Combination with steroid, IVIG, and plasmapheresis | - Prospective cohort, n = 2 - Pregnant mothers had an in utero diagnosis of fetal CHB by echocardiography at 24 and 28 weeks gestation | - Congenital heart block was reversed in one fetus and persisted in the other |
(12) Rufatti et al. 2022 [75] | Combination with steroid, IVIG, and plasmapheresis | - Non-randomized control study, n = 35 - Control arm: n = 19, treatment arm: n = 16 - Control arm: steroids alone or steroids + IVIG + random plasma exchange - Treatment arm: steroids + IVIG + weekly plasma exchange - Both groups began therapy after detection of a 2nd or 3rd degree CHB in utero - Mothers with a diagnosis of SLE, SS, or other connective tissue disease with a positive anti-SSA/Ro and/or anti-SSB/La titer | - Weekly plasmapheresis in the mother of the affected fetuses significantly reduced the likelihood of progressing from a 2nd degree block diagnosed in utero (p = 0.01), increased heart rate at birth (p < 0.01), and the likelihood of pacemaker implantation (p < 0.01) - No difference in the regression from a 3rd degree block was seen |
Integumentary—Common [81] - Erythematous macules and patches - Petechial hemorrhages - Discoid lesions - Cutis marmorata Cardiac - Common [82] - 1st, 2nd, or 3rd degree heart block - Sinus bradycardia - Prolonged QT-interval Pulmonary—Occasional to less common [83] - Pulmonary hypertension (self-limiting) Hepatobiliary—Less common [84] - Asymptomatic liver enzyme elevation - Cholestasis - Hepatitis - Mild hepatosplenomegaly Hematolyphoid—Less common [85] - Cytopenias common in SLE: anemia, neutropenia, thrombocytopenia - Aplastic anemia Central nervous system—Rare [86] - Hydrocephalus - Macrocephaly Musculoskeletal—Rare [87] - Chondrodysplasia punctata (stippling of the bones and cartilage on radiography), self-limiting |
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody structure and function: The basis for engineering therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro-Shelef, M.; Calame, K.C. Regulation of plasma-cell development. Nat. Rev. Immunol. 2005, 5, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Elkon, K.; Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 2008, 4, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosato, E.; Pisarri, S.; Salsano, F. Current strategies for the treatment of autoimmune diseases. J. Biol. Regul. Homeost. Agents 2010, 24, 251–259. [Google Scholar] [PubMed]
- Buyon, J.P.; Clancy, R.M.; Friedman, D.M. Cardiac manifestations of neonatal lupus erythematosus: Guidelines to management, integrating clues from the bench and bedside. Nat. Clin. Pract. Rheumatol. 2009, 5, 139–148. [Google Scholar] [CrossRef]
- Qin, B.; Wang, J.; Yang, Z.; Yang, M.; Ma, N.; Huang, F.; Zhong, R. Epidemiology of primary Sjögren’s syndrome: A systematic review and meta-analysis. Ann. Rheum. Dis. 2015, 74, 1983–1989. [Google Scholar] [CrossRef]
- Patel, R.; Shahane, A. The epidemiology of Sjögren’s syndrome. Clin. Epidemiol. 2014, 6, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Sayyed, Z.; Ameer, M.A.; Arif, A.W.; Kiran, F.; Iftikhar, A.; Iftikhar, W.; Ahmad, M.Q.; Malik, M.B.; Kumar, V.; et al. Systemic Lupus Erythematosus: An Overview of the Disease Pathology and Its Management. Cureus 2018, 10, e3288. [Google Scholar] [CrossRef] [Green Version]
- Fava, A.; Petri, M. Systemic lupus erythematosus: Diagnosis and clinical management. J. Autoimmun. 2019, 96, 1–13. [Google Scholar] [CrossRef]
- Metry, A.M.; al Salmi, I.; al Balushi, F.; Yousef, M.A.; Al Ismaili, F.; Hola, A.; Hannawi, S. Systemic Lupus Erythematosus: Symptoms and Signs at Initial Presentations. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2018, 18, 142–150. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Parton, H.; Wang, L.; McCune, W.J.; Lim, S.S.; Drenkard, C.; Ferucci, E.D.; Dall’Era, M.; Gordon, C.; Helmick, C.G.; et al. Prevalence of Systemic Lupus Erythematosus in the United States: Estimates From a Meta-Analysis of the Centers for Disease Control and Prevention National Lupus Registries. Arthritis Rheumatol. 2021, 73, 991–996. [Google Scholar] [CrossRef]
- Llanos, C.; Izmirly, P.M.; Katholi, M.; Clancy, R.M.; Friedman, D.M.; Kim, M.Y.; Buyon, J.P. Recurrence rates of cardiac manifestations associated with neonatal lupus and maternal/fetal risk factors. Arthritis Rheum. 2009, 60, 3091–3097. [Google Scholar] [CrossRef] [Green Version]
- Rees, F.; Doherty, M.; Grainge, M.J.; Lanyon, P.; Zhang, W. The worldwide incidence and prevalence of systemic lupus erythematosus: A systematic review of epidemiological studies. Rheumatology 2017, 56, 1945–1961. [Google Scholar] [CrossRef] [Green Version]
- Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Semin. Arthritis Rheum. 2010, 39, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Winters, J.L. Plasma exchange: Concepts, mechanisms, and an overview of the American Society for Apheresis guidelines. Hematol./Educ. Program Am. Soc. Hematol. Am. Soc. Hematol. Educ. Program 2012, 2012, 7–12. [Google Scholar] [CrossRef]
- Ipe, T.S.; Marques, M.B. Vascular access for therapeutic plasma exchange. Transfusion 2018, 58, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Reeves, H.M.; Winters, J.L. The mechanisms of action of plasma exchange. Br. J. Haematol. 2014, 164, 342–351. [Google Scholar] [CrossRef]
- Osman, C.; Jennings, R.; El-Ghariani, K.; Pinto, A. Plasma exchange in neurological disease. Pract. Neurol. 2020, 20, 92–99. [Google Scholar] [CrossRef]
- Vadakedath, S.; Kandi, V. Dialysis: A Review of the Mechanisms Underlying Complications in the Management of Chronic Renal Failure. Cureus 2017, 9, e1603. [Google Scholar] [CrossRef] [Green Version]
- Carless, P.A.; Rubens, F.D.; Anthony, D.M.; O’Connell, D.; Henry, D.A. Platelet-rich-plasmapheresis for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst. Rev. 2011, CD004172. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef] [PubMed]
- Sadler, J.E. Pathophysiology of thrombotic thrombocytopenic purpura. Blood 2017, 130, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, A.; Wu, D. Advances in therapeutic Fc engineering—Modulation of IgG-associated effector functions and serum half-life. Front. Immunol. 2016, 7, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connelly-Smith, L.; Tanhehco, Y.C.; Chhibber, V.; Delaney, M.; Eichbaum, Q.; Fernandez, C.; Joshi, S.; Schwartz, J.; Linenberger, M. Choosing Wisely for apheresis. J. Clin. Apher. 2018, 33, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Jardine, L.; Gottgens, B.; Teichmann, S.A.; Haniffa, M. Prenatal development of human immunity. Science 2020, 368, 600–603. [Google Scholar] [CrossRef]
- Zon, L.I. Developmental biology of hematopoiesis. Blood 1995, 86, 2876–2891. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T. Cellular basis of embryonic hematopoiesis and its implications in prenatal erythropoiesis. Int. J. Mol. Sci. 2020, 21, 9346. [Google Scholar] [CrossRef]
- Hossain, Z.; Reza, A.H.M.M.; Qasem, W.A.; Friel, J.K.; Omri, A. Development of the immune system in the human embryo. Pediatr. Res. 2022, 92, 951–955. [Google Scholar] [CrossRef]
- Poletaev, A.B.; Churilov, L.P.; Stroev, Y.I.; Agapov, M.M. Immunophysiology versus immunopathology: Natural autoimmunity in human health and disease. Pathophysiology 2012, 19, 221–231. [Google Scholar] [CrossRef]
- Chang, C. Neonatal autoimmune diseases: A critical review. J. Autoimmun. 2012, 38, J223–J238. [Google Scholar] [CrossRef]
- Brucato, A.; Cimaz, R.; Caporali, R.; Ramoni, V.; Buyon, J. Pregnancy outcomes in patients with autoimmune diseases and anti-Ro/SSA antibodies. Clin. Rev. Allergy Immunol. 2011, 40, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Kelekar, A.; Saitta, M.R.; Keene, J.D. Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60- and 52-kD proteins. J. Clin. Investig. 1994, 93, 1637–1644. [Google Scholar] [CrossRef]
- Hasler, D.; Lehmann, G.; Murakawa, Y.; Klironomos, F.; Jakob, L.; Grässer, F.A.; Rajewsky, N.; Landthaler, M.; Meister, G. The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. Mol. Cell. 2016, 63, 110–124. [Google Scholar] [CrossRef]
- Brucato, A.; Doria, A.; Frassi, M.; Castellino, G.; Franceschini, F.; Faden, D.; Pisoni, M.P.; Solerte, L.; Muscarà, M.; Lojacono, A.; et al. Pregnancy outcome in 100 women with autoimmune diseases and anti-Ro/SSA antibodies: A prospective controlled study. Lupus 2002, 11, 716–721. [Google Scholar] [CrossRef]
- Claus, R.; Hickstein, H.; Külz, T.; Lenschow, U.; Meiske, D.; Kotitschke, A.; Thiesen, H.-J.; Lorenz, P. Identification and management of fetuses at risk for, or affected by, congenital heart block associated with autoantibodies to, S.S.A (Ro), SSB (La), or an HsEg5-like autoantigen. Rheumatol. Int. 2006, 26, 886–895. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Saxena, A.; Kim, M.Y.; Wang, D.; Sahl, S.K.; Llanos, C.; Friedman, D.; Buyon, J. Maternal and fetal factors associated with mortality and morbidity in a multi-racial/ethnic registry of anti-SSA/Ro-associated cardiac neonatal lupus. Circulation 2011, 124, 1927–1935. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.A. Neonatal Lupus: Clinical Features and Management. Pediatr. Drugs 2004, 6, 71–78. [Google Scholar] [CrossRef]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 2012, 985646. [Google Scholar] [CrossRef]
- Dema, B.; Charles, N. Autoantibodies in, S.L.E: Specificities, isotypes and receptors. Antibodies 2016, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Rao, L.; Liu, G.; Li, C.; Li, Y.; Wang, Z.; Zhou, Z.; Tong, S.; Wu, X. Specificity of anti-SSB as a diagnostic marker for the classification of systemic lupus erythematosus. Exp. Ther. Med. 2013, 5, 1710–1714. [Google Scholar] [CrossRef]
- Didier, K.; Bolko, L.; Giusti, D.; Toquet, S.; Robbins, A.; Antonicelli, F.; Servettaz, A. Autoantibodies associated with connective tissue diseases: What meaning for clinicians? Front. Immunol. 2018, 9, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritzler, M.J.; Pauls, J.D.; Kinsella, T.D.; Bowen, T.J. Antinuclear, anticytoplasmic, and anti-Sjogren’s Syndrome antigen A (SS-A/Ro) antibodies in female blood donors. Clin. Immunol. Immunopathol. 1985, 36, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, A.; Gómez, J.; Escanlar, E.; Caminal-Montero, L.; Mozo, L. Clinical associations of anti-SSA/Ro60 and anti-Ro52/TRIM21 antibodies: Diagnostic utility of their separate detection. Autoimmunity 2013, 46, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Robbins, A.; Hentzien, M.; Toquet, S.; Didier, K.; Servettaz, A.; Pham, B.-N.; Giusti, D. Diagnostic utility of separate anti-Ro60 and anti-Ro52/TRIM21 antibody detection in autoimmune diseases. Front. Immunol. 2019, 10, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menéndez, A.; Gómez, J.; Caminal-Montero, L.; Díaz-López, J.B.; Cabezas-Rodríguez, I.; Mozo, L. Common and specific associations of anti-SSA/Ro60 and anti-Ro52/TRIM21 antibodies in systemic lupus erythematosus. Sci. World J. 2013, 2013, 832789. [Google Scholar] [CrossRef]
- Ambrosi, A.; Wahren-Herlenius, M. Congenital heart block: Evidence for a pathogenic role of maternal autoantibodies. Arthritis Res. Ther. 2012, 14, 208–211. [Google Scholar] [CrossRef] [Green Version]
- Brucato, A.; Frassi, M.; Franceschini, F.; Cimaz, R.; Faden, D.; Pisoni, M.P.; Vignati, G.; Stramba-Badiale, M.; Catelli, L.; Lojacono, A.; et al. Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counterimmunoelectrophoresis: A prospective study of 100 women. Arthritis Rheum. 2001, 44, 1832–1835. [Google Scholar] [CrossRef]
- Karnabi, E.; Boutjdir, M. Role of calcium channels in congenital heart block. Scand. J. Immunol. 2010, 72, 226–234. [Google Scholar] [CrossRef]
- Ohlsson, M.; Jonsson, R.; Brokstad, K.A. Subcellular redistribution and surface exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells: A possible mechanism in the pathogenesis of Sjögren’s syndrome. Scand. J. Immunol. 2002, 56, 456–469. [Google Scholar] [CrossRef]
- Karnabi, E.; Qu, Y.; Mancarella, S.; Boutjdir, M. Rescue and worsening of congenital heart block-associated electrocardiographic abnormalities in two transgenic mice. J. Cardiovasc. Electrophysiol. 2011, 22, 922–930. [Google Scholar] [CrossRef]
- Derdulska, J.M.; Rudnicka, L.; Szykut-Badaczewska, A.; Mehrholz, D.; Nowicki, R.J.; Barańska-Rybak, W.; Wilkowska, A. Neonatal lupus erythematosus—Practical guidelines. J. Perinat. Med. 2021, 49, 529–538. [Google Scholar] [CrossRef]
- Lun Hon, K.; Leung, A.K.C. Neonatal Lupus Erythematosus. Autoimmune Dis. 2012, 2012, 301274. [Google Scholar] [CrossRef] [Green Version]
- Harold, J.G. Screening for critical congenital heart disease in Newborns. Circulation 2014, 130, e79–e81. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.M.; Kim, M.Y.; Copel, J.A.; Davis, C.; Phoon, C.K.; Glickstein, J.S.; Buyon, J.P. Utility of cardiac monitoring in fetuses at risk for congenital heart block: The, P.R. interval and dexamethasone evaluation (PRIDE) prospective study. Circulation 2008, 117, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Pruetz, J.D.; Miller, J.C.; Loeb, G.E.; Silka, M.J.; Bar-Cohen, Y.; Chmait, R.H. Prenatal diagnosis and management of congenital complete heart block. Birth Defects Res. 2019, 111, 380–388. [Google Scholar] [CrossRef]
- Cimaz, R.; Spence, D.L.; Hornberger, L.; Silverman, E.D. Incidence and spectrum of neonatal lupus erythematosus: A prospective study of infants born to mothers with anti-ro autoantibodies. J. Pediatr. 2003, 142, 678–683. [Google Scholar] [CrossRef]
- Jaeggi, E.T.; Hornberger, L.K.; Smallhorn, J.F.; Fouron, J.C. Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: Combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet. Gynecol. 2005, 26, 16–21. [Google Scholar] [CrossRef]
- Brucato, A.; Previtali, E.; Ramoni, V.; Ghidoni, S. Arrhythmias presenting in neonatal lupus. Scand. J. Immunol. 2010, 72, 198–204. [Google Scholar] [CrossRef]
- Friedman, D.; Duncanson, L.; Glickstein, J.; Buyon, J. A review of congenital heart block. Images Paediatr. Cardiol. 2003, 5, 36–48. [Google Scholar]
- Fahed, A.C.; Roberts, A.E.; Mital, S.; Lakdawala, N.K. Heart failure in congenital heart disease. A confluence of acquired and congenital. Heart Fail. Clin. 2014, 10, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, C.S.; Copel, J.A. Perinatal outcome of fetal complete atrioventricular block: A multicenter experience. J. Am. Coll. Cardiol. 1991, 17, 1360–1366. [Google Scholar] [CrossRef]
- Chandler, S.F.; Fynn-Thompson, F.; Mah, D.Y. Role of cardiac pacing in congenital complete heart block. Expert Rev. Cardiovasc. Ther. 2017, 15, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Radwan, A.A.; Ali, A.K.; Abd-Elkariem, A.Y.; Shazly, S.A. Use of antenatal fluorinated corticosteroids in management of congenital heart block: Systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 4, 100072. [Google Scholar] [CrossRef] [PubMed]
- Clowse, M.E.B.; Eudy, A.M.; Kiernan, E.; Williams, M.R.; Bermas, B.; Chakravarty, E.; Sammaritano, L.R.; Chambers, C.D.; Buyon, J. The prevention, screening and treatment of congenital heart block from neonatal lupus: A survey of provider practices. Rheumatology 2018, 57, v9–v17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandoli, G.; Palmsten, K.; Forbess Smith, C.J.; Chambers, C.D. A Review of Systemic Corticosteroid Use in Pregnancy and the Risk of Select Pregnancy and Birth Outcomes. Rheum. Dis. Clin. N. Am. 2017, 43, 489–502. [Google Scholar] [CrossRef]
- Mariotti, V.; Marconi, A.M.; Pardi, G. Undesired effects of steroids during pregnancy. J. Matern.-Fetal Neonatal Med. 2004, 16 (Suppl. 2), 5–7. [Google Scholar] [CrossRef]
- Tonello, M.; Ruffatti, A.; Marson, P.; Tison, T.; Marozio, L.; Hoxha, A.; De Silvestro, G.; Punzi, L. Plasma exchange effectively removes 52- and 60-kDa anti-RO/SSA and anti-La/SSB antibodies in pregnant women with congenital heart block. Transfusion 2015, 55, 1782–1786. [Google Scholar] [CrossRef]
- Maternal Connective Tissue Disease and Congenital Heart Block. N. Engl. J. Med. 1985, 312, 1328–1329. [CrossRef]
- Barclay, C.S.; French, M.; Ross, L.D.; Sokol, R.J. Successful pregnancy following steroid therapy and plasma exchange in a woman with anti-Ro (SS-A) antibodies. Case report. BJOG 1987, 94, 369–371. [Google Scholar] [CrossRef]
- van der Leij, J.N.; Visser, G.H.A.; Bink-Boelkens, M.T.E.; Meilof, J.F.; Kallenberg, C.G.M. Successful outcome of pregnancy after treatment of maternal anti-ro (SSA) antibodies with immunosuppressive therapy and plasmapheresis. Prenat. Diagn. 1994, 14, 1003–1007. [Google Scholar] [CrossRef]
- Zemlin, M.; Bauer, K.; Dörner, T.; Altinöz, H.; Versmold, H. Intrauterine therapy and outcome in four pregnancies of one mother with anti Ro-autoantibody positive Sjoegren’s Syndrome. Z. Geburtshilfe Neonatol. 2002, 206, 22–25. [Google Scholar] [CrossRef]
- Yang, C.H.; Chen, J.Y.; Lee, S.C.; Luo, S.F. Successful preventive treatment of congenital heart block during pregnancy in a woman with systemic lupus erythematosus and anti-Sjögren’s syndrome A/Ro antibody. J. Microbiol. Immunol. Infect. 2005, 38, 365–369. [Google Scholar]
- Ruffatti, A.; Milanesi, O.; Chiandetti, L.; Cerutti, A.; Gervasi, M.; De Silvestro, G.; Pengo, V.; Punzi, L. A combination therapy to treat second-degree anti-Ro/La-related congenital heart block. A strategy to avoid stable third-degree heart block? Lupus 2012, 21, 666–671. [Google Scholar] [CrossRef]
- Saxena, A.; Izmirly, P.M.; Mendez, B.; Buyon, J.P.; Friedman, D.M. Prevention and treatment in utero of autoimmune-associated congenital heart block. Cardiol. Rev. 2014, 22, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Ruffatti, A.; Cerutti, A.; Tonello, M.; Favaro, M.; Del Ross, T.; Calligaro, A.; Grava, C.; Zen, M.; Hoxha, A.; Di Salvo, G. Short and long-term outcomes of children with autoimmune congenital heart block treated with a combined maternal-neonatal therapy. A comparison study. J. Perinatol. 2022, 42, 1161–1168. [Google Scholar] [CrossRef]
- Hou, M.; Zhao, Y.; Liu, X.W.; He, Y.H. Treatment and follow-up of fetuses that developed congenital heart block due to autoantibody in two cases. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
- Miyakata, S.; Takeuchi, K.; Yamaji, K.; Kanai, Y.; Tsuda, H.; Takasaki, Y. Therapeutic plasmapheresis for the prevention of congenital complete heart block associated with anti-SS-A/Ro antibody and anti-SS-B/La antibody. Ryumachi 2001, 41, 726–735. [Google Scholar]
- Makino, S.; Yonemoto, H.; Itoh, S.; Takeda, S. Effect of steroid administration and plasmapheresis to prevent fetal congenital heart block in patients with systemic lupus erythematosus and/or Sjögren’s syndrome. Acta Obstet. Gynecol. Scand. 2007, 86, 1145–1146. [Google Scholar] [CrossRef]
- di Mauro, A.; Caroli Casavola, V.; Favia Guarnieri, G.; Calderoni, G.; Cicinelli, E.; Laforgia, N. Antenatal and postnatal combined therapy for autoantibody-related congenital atrioventricular block. BMC Pregnancy Childbirth 2013, 13, 220. [Google Scholar] [CrossRef] [Green Version]
- Ruffatti, A.; Cerutti, A.; Favaro, M.; Del Ross, T.; Calligaro, A.; Hoxha, A.; Marson, P.; Leoni, L.; Milanesi, O. Plasmapheresis, intravenous immunoglobulins and bethametasone—A combined protocol to treat autoimmune congenital heart block: A prospective cohort study. Clin. Exp. Rheumatol. 2016, 34(4), 706–713. [Google Scholar]
- Wisuthsarewong, W.; Soongswang, J.; Chantorn, R. Neonatal lupus erythematosus: Clinical character, investigation, and outcome. Pediatr. Dermatol. 2011, 28, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Capone, C.; Buyon, J.P.; Friedman, D.M.; Frishman, W.H. Cardiac manifestations of neonatal lupus: A review of autoantibody- associated congenital heart block and its impact in an adult opulation. Cardiol. Rev. 2012, 20, 72–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maltret, A.; Morel, N.; Levy, M.; Evangelista, M.; Malekzadeh-Milani, S.; Barbet, P.; Costedoat-Chalumeau, N.; Bonnet, D. Pulmonary hypertension associated with congenital heart block and neonatal lupus syndrome: A series of four cases. Lupus 2021, 30, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.A.; Sokol, R.J.; Buyon, J.P. Hepatobiliary disease in neonatal lupus: Prevalence and clinical characteristics in cases enrolled in a national registry. Pediatrics 2002, 109, e11. [Google Scholar] [CrossRef]
- Wolach, B.; Choc, L.; Pomeranz, A.; Ari, Y.; Douer, D.; Metzker, A. Aplastic Anemia in Neonatal Lupus Erythematosus. Am. J. Dis. Child. 1993, 147, 941–944. [Google Scholar] [CrossRef]
- Chen, C.C.; Lin, K.L.; Chen, C.L.; Wong, A.M.K.; Huang, J.L. Central nervous system manifestations of neonatal lupus: A systematic review. Lupus 2013, 22, 1484–1488. [Google Scholar] [CrossRef]
- Alrukban, H.; Chitayat, D. Fetal chondrodysplasia punctata associated with maternal autoimmune diseases: A review. Appl. Clin. Genet. 2018, 11, 31–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharobim, M.; Scribner, A.S.J.; Rose, W.N. Plasmapheresis in Neonatal Lupus. Rheumato 2023, 3, 8-22. https://doi.org/10.3390/rheumato3010002
Sharobim M, Scribner ASJ, Rose WN. Plasmapheresis in Neonatal Lupus. Rheumato. 2023; 3(1):8-22. https://doi.org/10.3390/rheumato3010002
Chicago/Turabian StyleSharobim, Mark, Angelica S. J. Scribner, and William N. Rose. 2023. "Plasmapheresis in Neonatal Lupus" Rheumato 3, no. 1: 8-22. https://doi.org/10.3390/rheumato3010002
APA StyleSharobim, M., Scribner, A. S. J., & Rose, W. N. (2023). Plasmapheresis in Neonatal Lupus. Rheumato, 3(1), 8-22. https://doi.org/10.3390/rheumato3010002