Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods?
Abstract
:1. Introduction
2. A Size-Discrete Population Balance Model (PBM)
3. The Inverse Problem: Estimation of the PBM Parameters
3.1. Principle I: Reduce Modeling Errors
3.2. Principle II: Reduce the Number of Model Parameters
3.3. Principle III: Generate a Dense Data Set
3.4. Principle IV: Ensure a Grid-Independent Solution to the PBM
3.5. Principle V: Use Global Optimization in Parameter Estimation
3.6. Principle VI: Test Predictive Capabilities of the PBM
4. Final Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randolph, A.D.; Larson, M.A. Theory of Particulate Processes; Academic Press: San Diego, CA, USA, 1988. [Google Scholar]
- King, R.P. Modeling and Simulation of Mineral Processing Systems; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Prasher, C.L. Crushing and Grinding Process Handbook; Wiley: Chichester, UK, 1987. [Google Scholar]
- Austin, L.G.; Klimpel, R.R.; Luckie, P.T. Process Engineering of Size Reduction: Ball Mill; Society of Mining Engineers of the AIME: Littleton, CO, USA, 1984. [Google Scholar]
- Sedlatschek, K.; Bass, L. Contribution to the theory of milling processes. Powder Metall. Bull. 1953, 6, 148–153. [Google Scholar]
- Austin, L.G. A review: Introduction to the mathematical description of grinding as a rate process. Powder Technol. 1971, 5, 1–17. [Google Scholar] [CrossRef]
- Herbst, J.A.; Fuerstenau, D.W. Scale-up procedure for continuous grinding mill design using population balance models. Int. J. Miner. Process. 1980, 7, 1–31. [Google Scholar] [CrossRef]
- Muanpaopong, N.; Davé, R.; Bilgili, E. A comparative analysis of steel and alumina balls in fine milling of cement clinker via PBM and DEM. Powder Technol. 2023, 421, 118454. [Google Scholar] [CrossRef]
- Capece, M.; Bilgili, E.; Dave, R. Identification of the breakage rate and distribution parameters in a non-linear population balance model for batch milling. Powder Technol. 2011, 208, 195–204. [Google Scholar] [CrossRef]
- Klimpel, R.R.; Austin, L.G. The back-calculation of specific rates of breakage and non-normalized breakage distribution parameters from batch grinding data. Int. J. Miner. Process. 1977, 4, 7–32. [Google Scholar] [CrossRef]
- Whiten, W.J. A matrix theory of comminution machines. Chem. Eng. Sci. 1974, 29, 589–599. [Google Scholar] [CrossRef]
- Austin, L.G.; Bhatia, V.K. Experimental methods for grinding studies in laboratory mills. Powder Technol. 1972, 5, 261–266. [Google Scholar] [CrossRef]
- Austin, L.G.; Luckie, P.T. Methods for determination of breakage distribution parameters. Powder Technol. 1972, 5, 215–222. [Google Scholar] [CrossRef]
- Palaniandy, S. Extending the application of JKFBC for gravity induced stirred mills feed ore characterization. Miner. Eng. 2017, 101, 1–9. [Google Scholar] [CrossRef]
- Shi, F.N.; Kojovic, T. Validation of a model for impact breakage incorporating particle size effect. Int. J. Miner. Process. 2007, 82, 156–163. [Google Scholar] [CrossRef]
- Napier–Munn, T.J.; Morrell, S.; Morrison, R.D.; Kojovic, T. Mineral Comminution Circuits—Their Operation and Optimization; JKMRC Monograph Series in Mining and Mineral Processing; Julius Kruttschnitt Mineral Research Centre, University of Queensland: Brisbane, Australia, 1996. [Google Scholar]
- Devaswithin, A.; Pitchumani, B.; de Silva, S.R. Modified back-calculation method to predict particle size distributions for batch grinding in a ball mill. Ind. Eng. Chem. Res. 1988, 27, 723–726. [Google Scholar] [CrossRef]
- Reid, K.J. A solution to the batch grinding equation. Chem. Eng. Sci. 1965, 20, 953–963. [Google Scholar] [CrossRef]
- Capece, M.; Bilgili, E.; Dave, R. Emergence of falsified kinetics as a consequence of multi-particle interactions in dense-phase comminution processes. Chem. Eng. Sci. 2011, 66, 5672–5683. [Google Scholar] [CrossRef]
- Bilgili, E.; Capece, M.; Afolabi, A. Modeling of milling processes via DEM, PBM, and microhydrodynamics. In Predictive Modeling of Pharmaceutical Unit Operations, 1st ed.; Pandey, P., Bharadwaj, R., Eds.; Elsevier: Oxford, UK, 2017; pp. 159–203. [Google Scholar]
- Sommer, M.; Stenger, F.; Peukert, W.; Wagner, N.J. Agglomeration and breakage of nanoparticles in stirred media mills—A comparison of different methods and models. Chem. Eng. Sci. 2006, 61, 135–148. [Google Scholar] [CrossRef]
- Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing, and stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Toprak, N.A.; Benzer, A.H. Effects of grinding aids on model parameters of a cement ball mill and an air classifier. Powder Technol. 2019, 344, 706–718. [Google Scholar] [CrossRef]
- Bilgili, E.; Scarlett, B. Population balance modeling of non-linear effects in milling processes. Powder Technol. 2005, 153, 59–71. [Google Scholar] [CrossRef]
- Bilgili, E.; Yepes, J.; Scarlett, B. Formulation of a non-linear framework for population balance modeling of batch grinding: Beyond first-order kinetics. Chem. Eng. Sci. 2006, 61, 33–44. [Google Scholar] [CrossRef]
- Capece, M.; Dave, R.N.; Bilgili, E. On the origin of non-linear breakage kinetics in dry milling. Powder Technol. 2015, 272, 189–203. [Google Scholar] [CrossRef]
- Heitzmann, H. Caractérisation des Opérations de Dispersion—Broyage: Cas d’un Broyeur a Billes Continu Pour des Dispersions de Pigments. Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1992. [Google Scholar]
- Kelsall, D.F.; Reid, K.J.; Stewart, P.S.B. A study of grinding processes by dynamic modelling. Electr. Eng. Trans. Inst. Eng. 1969, EE5, 155–169. [Google Scholar]
- Kwade, A.; Schwedes, J. Wet grinding in stirred media mills. In Handbook of Powder Technology; Salman, A.D., Ghadiri, M., Hounslow, M.J., Eds.; Elsevier: Oxford, UK, 2007; pp. 253–380. [Google Scholar]
- Fadhel, H.B.; Frances, C.; Mamourian, A. Investigations on ultra-fine grinding of titanium dioxide in a stirred media mill. Powder Technol. 1999, 105, 362–373. [Google Scholar] [CrossRef]
- Kwon, J.; Cho, H. Investigation of error distribution in the back-calculation of breakage function model parameters via nonlinear programming. Minerals 2021, 11, 425. [Google Scholar] [CrossRef]
- Austin, L.G.; Shoji, K.; Luckie, P.T. The effect of ball size on mill performance. Powder Technol. 1976, 1, 71–79. [Google Scholar] [CrossRef]
- Austin, L.G.; Luckie, P.T. The estimation of non-normalized breakage distribution parameters from batch grinding tests. Powder Technol. 1972, 5, 267–271. [Google Scholar] [CrossRef]
- Katubilwa, F.M.; Moys, M.H. Effect of ball size distribution on milling rate. Miner. Eng. 2009, 15, 1283–1288. [Google Scholar] [CrossRef]
- Klimpel, R.R.; Austin, L.G. Determination of selection–for–breakage functions in the batch grinding equation by nonlinear optimization. Ind. Eng. Chem. Fundam. 1970, 9, 230–237. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Kavetsky, A. Investigation of particle breakage mechanisms in a batch ball mill using back-calculation. Int. J. Miner. Process. 1993, 39, 41–60. [Google Scholar] [CrossRef]
- Carvalho, R.M.; Oliveira, A.L.R.; Petit, H.A.; Tavares, L.M. Comparing modeling approaches in simulating a continuous pilot– scale wet vertical stirred mill using PBM–DEM–CFD. Adv. Powder Technol. 2023, 34, 104–135. [Google Scholar] [CrossRef]
- Capece, M.; Bilgili, E.; Dave, R.N. Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method. AIChE J. 2014, 60, 2404–2415. [Google Scholar] [CrossRef]
- Capece, M.; Bilgili, E.; Davé, R. Insight into first–order breakage kinetics using a particle-scale breakage rate constant. Chem. Eng. Sci. 2014, 117, 318–330. [Google Scholar] [CrossRef]
- Vogel, L.; Peukert, W. Breakage behaviour of different materials–Construction of a mastercurve for the breakage probability. Powder Technol. 2003, 129, 101–110. [Google Scholar] [CrossRef]
- Kotake, N.; Suzuki, K.; Asahi, S.; Kanda, Y. Experimental study on the grinding rate constant of solid materials in a ball mill. Powder Technol. 2002, 122, 101–108. [Google Scholar] [CrossRef]
- Genc, O. Optimization of an industrial scale open circuit three-compartment cement grinding ball mill with the aid of simulation. Int. J. Miner. Process. 2016, 154, 1–9. [Google Scholar] [CrossRef]
- Ramkrishna, D. Population Balances–Theory and Applications to Particulate Systems in Engineering; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Austin, L.G. A discussion of equations for the analysis of batch grinding data. Powder Technol. 1999, 106, 71–77. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Global Optimization Toolbox User’s Guide (R2022a); The MathWorks, Inc.: Natick, MA, USA, 2022. [Google Scholar]
- Glover, F. A template for scatter search and path relinking. In Artificial Evolution, Lecture Notes in Computer Science; Hao, J.K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1363, pp. 13–54. [Google Scholar]
- Aster, R.; Borchers, B.; Thurber, C. Parameter Estimation and Inverse Problems; Elsevier Academic Press: Oxford, UK, 2005. [Google Scholar]
- Tuzun, M.A. A Study of Comminution in a Vertical Stirred Ball Mill. Ph.D. Thesis, University of Natal, Durban, South Africa, 1993. [Google Scholar]
- Hasan, M.; Palaniandy, S.; Hilden, M.; Powell, M. Calculating breakage parameters of a batch vertical stirred mill. Miner. Eng. 2017, 111, 229–237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilgili, E. Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods? Powders 2024, 3, 190-201. https://doi.org/10.3390/powders3020012
Bilgili E. Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods? Powders. 2024; 3(2):190-201. https://doi.org/10.3390/powders3020012
Chicago/Turabian StyleBilgili, Ecevit. 2024. "Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods?" Powders 3, no. 2: 190-201. https://doi.org/10.3390/powders3020012
APA StyleBilgili, E. (2024). Population Balance Modeling of Milling Processes: Are We Falsifying Breakage Kinetics and Distribution via Back-Calculation Methods? Powders, 3(2), 190-201. https://doi.org/10.3390/powders3020012