Consolidation of Calcium Carbonate Using Polyacrylamides with Different Chemistries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedures
2.2.1. Polymer and CaCO3 Plug Sample Preparation
2.2.2. Oscillatory Rheology
2.2.3. Unconfined Compressive Strength (UCS) Test
2.2.4. Zeta Potential Analysis
3. Results
3.1. Effect of Polyacrylamide Molecular Weight on Calcium Carbonate Consolidation
3.2. Effect of Polyacrylamide Charge Density on Calcium Carbonate Consolidation
3.3. Effect of Polyacrylamide Functional Group on Calcium Carbonate Consolidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Li, G.; Li, Y.; Guo, J.; Zhou, S.; Yong, S.; Pan, B.; Bai, B. Adsorption of new hydrophobic polyacrylamide on the calcite surface. J. Appl. Polym. Sci. 2017, 134, 45314–45321. [Google Scholar] [CrossRef]
- Mahmood, A.; Vissapragada, B.; Alghamdi, A.H.; Allen, D.; Herron, M.; Carnegie, A.; Dutta, D.; Olesen, J.-R.; Chourasiya, R.D.; Logan, D.; et al. A Snapshot of Carbonate Reservoir Evaluation. Oilfield Rev. 2000, 12, 20–41. [Google Scholar]
- Talaghat, M.R.; Esmaeilzadeh, F.; Mowla, D. Sand production control by chemical consolidation. J. Pet. Sci. Eng. 2009, 67, 34–40. [Google Scholar] [CrossRef]
- Nouri, A.; Vaziri, H.; Belhaj, H.; Islam, R. Effect of Volumetric Failure on Sand Production in Oil-Wellbores. SPE 80448. In Proceedings of the SPE—Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 9–11 September 2003; pp. 86–93. [Google Scholar]
- Gun, W.J.; Routh, A.F.; Aytkhozhina, D.; Aston, M. Sand consolidation via latex destabilization. AIChE J. 2017, 63, 2610–2617. [Google Scholar] [CrossRef]
- Lee, R.Y. Development of Sand Agglomeration Formulation for Oil & Gas Well Applications to Reduce the Production of Fine Particulates. Ph.D. Thesis, Imperial College London, London, UK, 2019. [Google Scholar]
- Samarkin, Y.; Aljawad, M.S.; Amao, A.; Solling, T.; Abu-Khamsin, S.A.; Patil, S.; AlTammar, M.J.; Alruwaili, K.M. Carbonate Rock Chemical Consolidation Methods: Advancement and Applications. Energy Fuels 2022, 36, 4186–4197. [Google Scholar] [CrossRef]
- Dixon, D.V.; Soares, J.B.P. Molecular weight distribution effects of polyacrylamide flocculants on clay aggregate formation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129487. [Google Scholar] [CrossRef]
- Rice, S.A.; Nagasawa, M. Polyelectrolyte Solutions, a Theoretical Introduction; Academic Press: London, UK, 1961. [Google Scholar]
- Caskey, J.A.; Primus, R.J. The effect of anionic polyacrylamide molecular conformation and configuration on flocculation effectiveness. Environ. Prog. Sustain. Energy 1986, 5, 98–103. [Google Scholar] [CrossRef]
- Fleer, G.J. Polymers at interfaces and in colloidal dispersions. Adv. Colloid Interface Sci. 2010, 159, 99–116. [Google Scholar] [CrossRef]
- Lew, J.H.; Matar, O.K.; Müller, E.A.; Luckham, P.F.; Sousa Santos, A.; Myo Thant, M.M. Atomic Force Microscopy of Hydrolysed Polyacrylamide Adsorption onto Calcium Carbonate. Polymers 2023, 15, 4037. [Google Scholar] [CrossRef]
- Szilagyi, I.; Trefalt, G.; Tiraferri, A.; Maroni, P.; Borkovec, M. Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 2014, 10, 2479–2502. [Google Scholar] [CrossRef]
- Gregory, J.; Barany, S. Adsorption and flocculation by polymers and polymer mixtures. Adv. Colloid Interface Sci. 2011, 169, 1–12. [Google Scholar] [CrossRef]
- Thuro, K.; Plinninger, R.; Zah, S.; Schutz, S. Scale effects in rock strength properties. Part 1: Unconfined compressive test and Brazilian test. In Rock Mechanics, a Challenge for Society; Swets & Zeitlinger: Lisse, The Netherlands, 2001; pp. 169–174. [Google Scholar]
- Arismendi Florez, J.J.; Ferrari, J.V.; Michelon, M.; Ulsen, C. Construction of synthetic carbonate plugs: A review and some recent developments. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2019, 74, 29. [Google Scholar] [CrossRef]
- Özhan, H. Determination of mechanical and hydraulic properties of polyacrylamide-added bentonite-sand mixtures. Bull. Eng. Geol. Environ. 2021, 80, 2557–2571. [Google Scholar] [CrossRef]
- Liang, W.; Tadros, T.F.; Luckham, P.F. Investigations of Depletion Flocculation of Concentrated Sterically Stabilized Latex Dispersions Using Viscoelastic Measurements and Microscopy. J. Colloid Interface Sci. 1993, 158, 152–158. [Google Scholar] [CrossRef]
- Luckham, P.F.; Vincent, B.; Tadros, T.F. The controlled flocculation of particulate dispersions using small particles of opposite charge. IV. Effect of surface coverage of adsorbed polymer on heteroflocculation. Colloids Surf. 1983, 6, 119–133. [Google Scholar] [CrossRef]
- Otsubo, Y. Effect of particle size on the bridging structure and elastic properties of flocculated suspensions. J. Colloid Interface Sci. 1992, 153, 584–586. [Google Scholar] [CrossRef]
- Lew, J.H.; Matar, O.K.; Müller, E.A.; Maung, M.T.M.; Luckham, P.F. Adsorption of Hydrolysed Polyacrylamide onto Calcium Carbonate. Polymers 2022, 14, 405. [Google Scholar] [CrossRef] [PubMed]
- Dusseault, M.B.; Collins, P.M. Geomechanics Effects in Thermal Processes for Heavy-Oil Exploitation. In Heavy Oils: Reservoir Characterization and Production Monitoring; Geophysical Developments Series; Society of Exploration Geophysicists: Houston, TX, USA, 2010; pp. 287–291. [Google Scholar]
- Salehi, M.B.; Moghadam, A.M.; Marandi, S.Z. Polyacrylamide hydrogel application in sand control with compressive strength testing. Pet. Sci. 2019, 16, 94–104. [Google Scholar] [CrossRef]
- Rabiee, A. Acrylamide-Based Anionic Polyelectrolytes and Their Applications: A Survey. J. Vinyl Addit. Technol. 2010, 16, 111–119. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, H.; Wanless, E.; Jameson, G.; Franks, G.V. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers. J. Colloid Interface Sci. 2009, 336, 533–543. [Google Scholar] [CrossRef]
- Wiśniewska, M. The temperature effect on the adsorption mechanism of polyacrylamide on the silica surface and its stability. Appl. Surf. Sci. 2012, 258, 3094–3101. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Chibowski, S.; Urban, T.; Sternik, D.; Terpiłowski, K. Impact of anionic polyacrylamide on stability and surface properties of the Al(2)O(3)-polymer solution system at different temperatures. Colloid Polym. Sci. 2016, 294, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Mewis, J.; Wagner, N.J. Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Farooq, U.; Tweheyo, M.T.; Sjöblom, J.; Øye, G. Surface Characterization of Model, Outcrop, and Reservoir Samples in Low Salinity Aqueous Solutions. J. Dispers. Sci. Technol. 2011, 32, 519–531. [Google Scholar] [CrossRef]
- Sohal, M.A.; Thyne, G.; Søgaard, E.G. Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs. Energy Fuels 2016, 30, 1904–1914. [Google Scholar] [CrossRef]
- Blackman, L.D.; Gunatillake, P.A.; Cass, P.; Locock, K.E.S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 2019, 48, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Franks, G.V. Charging Behavior of the Gibbsite Basal (001) Surface in NaCl Solution Investigated by AFM Colloidal Probe Technique. Langmuir 2006, 22, 6087–6092. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J. Polymer adsorption and flocculation in sheared suspensions. Colloids Surf. 1998, 31, 231–253. [Google Scholar] [CrossRef]
- Rasteiro, M.G.; Pinheiro, I.; Ahmadloo, H.; Hunkeler, D.; Garcia, F.A.P.; Ferreia, P.; Wandrey, C. Correlation between flocculation and adsorption of cationic polyacrylamides on precipitated calcium carbonate. Chem. Eng. Res. Des. 2015, 95, 298–306. [Google Scholar] [CrossRef]
- Thomas, M.M.; Clouse, J.A.; Longo, J.M. Adsorption of organic compounds on carbonate minerals 1. Model compounds and their influence on mineral wettability. Chem. Geol. 1993, 109, 201–213. [Google Scholar] [CrossRef]
- Al-Hashmi, A.R.; Luckham, P.F.; Heng, J.Y.Y.; Al-Maamari, R.S.; Zaitoun, A.; Al-Sharji, H.H.; Al-Wehaibi, T.K. Adsorption of High-Molecular-Weight EOR Polymers on Glass Surfaces Using AFM and QCM-D. Energy Fuels 2013, 27, 2437–2444. [Google Scholar] [CrossRef]
- Plank, J.; Sachsenhauser, B. Impact of Molecular Structure on Zeta Potential and Adsorbed Conformation of .ALPHA.Allyl.OMEGA.-Methoxypolyethylene Glycol-Maleic Anhydride Superplasticizers. J. Adv. Concr. Technol. 2006, 4, 233–239. [Google Scholar] [CrossRef]
- Hue, K.Y.; Lew, J.H.; Myo Thant, M.M.; Matar, O.K.; Luckham, P.F.; Müller, E.A. Molecular Dynamics Simulation of Polyacrylamide Adsorption on Calcite. Molecules 2023, 28, 6367. [Google Scholar] [CrossRef]
- Xiong, B.; Zydney, A.L.; Kumar, M. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play. Water Res. 2016, 99, 162–170. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. Npj Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- LoPachin, R.M. The Changing View of Acrylamide Neurotoxicity. NeuroToxicology 2004, 25, 617–630. [Google Scholar] [CrossRef] [PubMed]
Polymer | Type | Functional Group | Charge Density | Molecular Weight (MDa) |
---|---|---|---|---|
F3330S | HPAM | Carboxylate | 25–30% | 11–13 |
F3530S | HPAM | Carboxylate | 25–30% | 15–17 |
F3630S | HPAM | Carboxylate | 25–30% | 18–20 |
AN910 | HPAM | Carboxylate | 10% | 11–13 |
AN945 | HPAM | Carboxylate | 40% | 11–13 |
AN125 | SPAM | Sulfonate | 25% | 8 |
AN132 | SPAM | Sulfonate | 32% | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lew, J.H.; Luckham, P.F.; Matar, O.K.; Müller, E.A.; Santos, A.S.; Maung Maung, M.T. Consolidation of Calcium Carbonate Using Polyacrylamides with Different Chemistries. Powders 2024, 3, 1-16. https://doi.org/10.3390/powders3010001
Lew JH, Luckham PF, Matar OK, Müller EA, Santos AS, Maung Maung MT. Consolidation of Calcium Carbonate Using Polyacrylamides with Different Chemistries. Powders. 2024; 3(1):1-16. https://doi.org/10.3390/powders3010001
Chicago/Turabian StyleLew, Jin Hau, Paul F. Luckham, Omar K. Matar, Erich A. Müller, Adrielle Sousa Santos, and Myo Thant Maung Maung. 2024. "Consolidation of Calcium Carbonate Using Polyacrylamides with Different Chemistries" Powders 3, no. 1: 1-16. https://doi.org/10.3390/powders3010001
APA StyleLew, J. H., Luckham, P. F., Matar, O. K., Müller, E. A., Santos, A. S., & Maung Maung, M. T. (2024). Consolidation of Calcium Carbonate Using Polyacrylamides with Different Chemistries. Powders, 3(1), 1-16. https://doi.org/10.3390/powders3010001