Parametric Stochastic Modeling of Particle Descriptor Vectors for Studying the Influence of Ultrafine Particle Wettability and Morphology on Flotation-Based Separation Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flotation-Based Separation Process
2.3. Mineral Liberation Analysis
2.4. Multivariate Tromp Functions
2.4.1. Interpretation of Multivariate Tromp Functions as Separation Probabilities
2.4.2. Reconstructing the Density of Descriptor Vectors for Particles in the Feed
2.4.3. Computation of Tromp Functions for Partially Available Separated Fractions
2.4.4. Restriction of Tromp Functions
2.5. Stochastic Modeling of Particle Descriptor Vectors
2.5.1. Size and Shape Descriptors
2.5.2. Univariate Stochastic Modeling of Single Particle Descriptors
2.5.3. Bivariate Stochastic Modeling of Pairs of Particle Descriptors
3. Results
3.1. Fitted Univariate and Bivariate Probability Densities
3.2. Computed Bivariate Tromp Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koh, P.T.L.; Hao, F.P.; Smith, L.K.; Chau, T.T.; Bruckard, W.J. The effect of particle shape and hydrophobicity in flotation. Int. J. Miner. Process. 2009, 93, 128–134. [Google Scholar] [CrossRef]
- Hassas, B.V.; Caliskan, H.; Guven, O.; Karakas, F.; Cinar, M.; Celik, M.S. Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 492, 88–99. [Google Scholar] [CrossRef]
- Verrelli, D.I.; Bruckard, W.J.; Koh, P.T.L.; Schwarz, M.P.; Follink, B. Particle shape effects in flotation. Part 1: Microscale experimental observations. Miner. Eng. 2014, 58, 80–89. [Google Scholar] [CrossRef]
- Xia, W. Role of particle shape in the floatability of mineral particle: An overview of recent advances. Powder Technol. 2017, 317, 104–116. [Google Scholar] [CrossRef]
- Chen, Y.; Zhuang, L.; Zhang, Z. Effect of particle shape on particle-bubble interaction behavior: A computational study using discrete element method. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 653, 130003. [Google Scholar] [CrossRef]
- Little, L.; Wiese, J.; Becker, M.; Mainza, A.; Ross, V. Investigating the effects of particle shape on chromite entrainment at a platinum concentrator. Miner. Eng. 2016, 96-97, 46–52. [Google Scholar] [CrossRef]
- Wiese, J.; Becker, M.; Yorath, G.; O’Connor, C. An investigation into the relationship between particle shape and entrainment. Miner. Eng. 2015, 83, 211–216. [Google Scholar] [CrossRef]
- Kupka, N.; Tolosana-Delgado, R.; Schach, E.; Bachmann, K.; Heinig, T.; Rudolph, M. R as an environment for data mining of process mineralogy data: A case study of an industrial rougher flotation bank. Miner. Eng. 2020, 146, 106111. [Google Scholar] [CrossRef]
- Schubert, H. On the optimization of hydrodynamics in fine particle flotation. Miner. Eng. 2008, 21, 930–936. [Google Scholar] [CrossRef]
- Trahar, W.J.; Warren, L.J. The flotability of very fine particles—A review. Int. J. Miner. Process. 1976, 3, 103–131. [Google Scholar] [CrossRef]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Miner. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner. Eng. 2015, 70, 77–91. [Google Scholar] [CrossRef]
- Schach, E.; Buchmann, M.; Tolosana-Delgado, R.; Leißner, T.; Kern, M.; van den Boogaart, K.G.; Rudolph, M.; Peuker, U.A. Multidimensional characterization of separation processes—Part 1: Introducing kernel methods and entropy in the context of mineral processing using SEM-based image analysis. Miner. Eng. 2019, 137, 78–86. [Google Scholar] [CrossRef]
- Leißner, T.; Bachmann, K.; Gutzmer, J.; Peuker, U.A. MLA-based partition curves for magnetic separation. Miner. Eng. 2016, 94, 94–103. [Google Scholar] [CrossRef]
- Buchmann, M.; Schach, E.; Tolosana-Delgado, R.; Leißner, T.; Astoveza, J.; Möckel, R.; Ebert, D.; Rudolph, M.; von de Boogaart, K.G.; Peuker, U.A. Evaluation of magnetic separation efficiency on a Cassiterite-Bearing Skarn ore by means of integrative SEM-based image and XRF–XRD data analysis. Minerals 2018, 8, 390. [Google Scholar] [CrossRef]
- Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Furat, O.; Leißner, T.; Bachmann, K.; Gutzmer, J.; Peuker, U.A.; Schmidt, V. Stochastic modeling of multidimensional particle characteristics using parametric copulas. Microsc. Microanal. 2019, 25, 720–734. [Google Scholar] [CrossRef]
- Nelsen, R. An Introduction to Copulas; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Sygusch, J.; Rudolph, M. A contribution to wettability and wetting characterisation of ultrafine particles with varying shape and degree of hydrophobization. Appl. Surf. Sci. 2021, 566, 150725. [Google Scholar] [CrossRef]
- Furat, O.; Masuhr, M.; Kruis, F.E.; Schmidt, V. Stochastic modeling of classifying aerodynamic lenses for separation of airborne particles by material and size. Adv. Powder Technol. 2020, 31, 2215–2226. [Google Scholar] [CrossRef]
- Frank, U.; Wawra, S.E.; Pflug, L.; Peukert, W. Multidimensional particle size distributions and their application to nonspherical particle systems in two dimensions. Part. Part. Syst. Charact. 2019, 36, 1800554. [Google Scholar] [CrossRef]
- VolkerH/feret_diameter.py. Available online: https://gist.github.com/VolkerH/0d07d05d5cb189b56362e8ee41882abf (accessed on 16 August 2022).
- Held, L.; Bové, D.S. Applied Statistical Inference: Likelihood and Bayes; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213. [Google Scholar]
- Joe, H. Dependence Modeling with Copulas; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Ditscherlein, R.; Furat, O.; de Langlard, M.; de Souza e Silva, J.M.; Sygusch, J.; Rudolph, M.; Leißner, T.; Schmidt, V.; Peuker, U.A. Multi-scale tomographic analysis for micron-sized particulate samples. Microsc. Microanal. 2020, 26, 676–688. [Google Scholar] [CrossRef]
- Buchmann, M.; Schach, E.; Leißner, T.; Kern, M.; Mütze, T.; Rudolph, M.; Peuker, U.A.; Tolosana-Delgado, R. Multidimensional characterization of separation processes – Part 2: Comparability of separation efficiency. Miner. Eng. 2020, 150, 106284. [Google Scholar] [CrossRef]
Parametric Family | Probability Density | |
---|---|---|
Normal | ||
Log-normal | ||
Gamma | ||
Beta |
Parametric Family | Copula Density | |
---|---|---|
Clayton | ||
Frank | ||
Gumbel |
Type of Particles | Descriptor | Parametric Family of Distributions/Copulas | Fitted Parameter Values |
---|---|---|---|
Log-normal-Log-normal mixture | |||
Spheres | Normal-Normal mixture | ||
Gumbel | |||
Log-normal-Log-normal mixture | |||
Fragments | Normal-Normal mixture | ||
Frank |
Type of Particles | Esterification | Descriptor | Parametric Family of Distributions/Copulas | Fitted Parameter Values |
---|---|---|---|---|
Gamma-Log-normal mixture | ||||
Normal-Normal mixture | ||||
Clayton | ||||
Log-normal-Normal mixture | ||||
Spheres | Normal-Normal mixture | |||
Clayton | ||||
Log-normal-Log-normal mixture | ||||
Beta | ||||
Frank | ||||
Log-normal-Log-normal mixture | ||||
Normal-Normal mixture | ||||
Frank | ||||
Log-normal-Log-normal mixture | ||||
Fragments | Normal-Normal mixture | |||
Frank | ||||
Log-normal-Log-normal mixture | ||||
Normal-Normal mixture | ||||
Frank |
Feed | Tailings | Concentrate | |||||
---|---|---|---|---|---|---|---|
Esterification | |||||||
Spheres | 3492 | 1371 | 486 | ||||
Fragments | 4275 | 3507 | 1417 |
Glass Particles | Descriptors | Family of Distributions/ Copula Families | Fitted Parameter Values |
---|---|---|---|
Log-normal-Log-normal mixture | |||
Spheres | Normal-Normal mixture | ||
Gumbel | |||
Log-normal-Log-normal mixture | |||
Fragments | Normal-Normal mixture | ||
Frank |
Wettability Scenario | Spheres | Fragments |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilhelm, T.; Sygusch, J.; Furat, O.; Bachmann, K.; Rudolph, M.; Schmidt, V. Parametric Stochastic Modeling of Particle Descriptor Vectors for Studying the Influence of Ultrafine Particle Wettability and Morphology on Flotation-Based Separation Behavior. Powders 2023, 2, 353-371. https://doi.org/10.3390/powders2020021
Wilhelm T, Sygusch J, Furat O, Bachmann K, Rudolph M, Schmidt V. Parametric Stochastic Modeling of Particle Descriptor Vectors for Studying the Influence of Ultrafine Particle Wettability and Morphology on Flotation-Based Separation Behavior. Powders. 2023; 2(2):353-371. https://doi.org/10.3390/powders2020021
Chicago/Turabian StyleWilhelm, Thomas, Johanna Sygusch, Orkun Furat, Kai Bachmann, Martin Rudolph, and Volker Schmidt. 2023. "Parametric Stochastic Modeling of Particle Descriptor Vectors for Studying the Influence of Ultrafine Particle Wettability and Morphology on Flotation-Based Separation Behavior" Powders 2, no. 2: 353-371. https://doi.org/10.3390/powders2020021
APA StyleWilhelm, T., Sygusch, J., Furat, O., Bachmann, K., Rudolph, M., & Schmidt, V. (2023). Parametric Stochastic Modeling of Particle Descriptor Vectors for Studying the Influence of Ultrafine Particle Wettability and Morphology on Flotation-Based Separation Behavior. Powders, 2(2), 353-371. https://doi.org/10.3390/powders2020021