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Abstract: Practically all particle separation processes depend on more than one particulate property.
In the case of the industrially important froth flotation separation, these properties concern wettability,
composition, size and shape. Therefore, it is useful to analyze different particle descriptors when
studying the influence of particle wettability and morphology on the separation behavior of particle
systems. A common tool for classifying particle separation processes are Tromp functions. Recently,
multivariate Tromp functions, computed by means of non-parametric kernel density estimation,
have emerged which characterize the separation behavior with respect to multidimensional vectors
of particle descriptors. In the present paper, an alternative parametric approach based on copulas
is proposed in order to compute multivariate Tromp functions and, in this way, to characterize
the separation behavior of particle systems. In particular, bivariate Tromp functions for the area-
equivalent diameter and aspect ratio of glass particles with different morphologies and surface
modification have been computed, based on image characterization by means of mineral liberation
analysis (MLA). Comparing the obtained Tromp functions with one another reveals the combined
influence of multiple factors, in this case particle wettability, morphology and size, on the separation
behavior and introduces an innovative approach for evaluating multidimensional separation. In
addition, we extend the parametric copula-based method for the computation of multivariate Tromp
functions, in order to characterize separation processes, also in the case when image measurements
are not available for all separated fractions.

Keywords: multivariate Tromp function; stochastic modeling; copula; flotation; separation process

1. Introduction

Considering the increasing amount of natural resources needed for everyday life,
mining and recycling industries are permanently aiming for the optimization of existing
processes and the development of novel technologies in order to improve the yield of
valuable materials. One of the most important techniques in the mining industry for the
processing of fine mineral particles (i.e., particles within the size range from 20 µm to
200 µm) is flotation. This separation technique exploits the differences in wettability of
various minerals, i.e., particles that are rather hydrophobic will attach to air bubbles and
can be recovered as a froth, while rather hydrophilic particles remain in the suspension.
However, in recent years it has been shown that other particle properties, e.g., given by
descriptors of their size or shape, can also influence the separation process. Studies, which
were focusing on the suspension zone during flotation, demonstrated that irregularly
shaped particles have higher flotation recoveries when compared to rather spherical par-
ticles, since it is assumed that their sharp edges facilitate the rupture of the liquid film
between the particle and the bubble [1–4]. This is supported by latest research including
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discrete element method simulations of particle-bubble interactions comparing spheres
and irregularly shaped particles [5]. On the other hand, studies focusing on the froth zone
did not yield such clear results, since some studies stated that the entrainment of unwanted
gangue particles increases with particle roundness, whereas other studies claimed that the
entrainment is higher for elongated particles [6–8]. Regarding particle size, it is known that
flotation is most efficient for particles with intermediate size ranges. The flotation of very
fine particles (smaller than 10 µm) is a challenging task and is accompanied by high levels
of entrainment or slime coating, resulting in low grade concentrates [9–12].

In order to improve the separation efficiency for particle systems with a high amount of
fines, a novel flotation apparatus has been designed, see Section 2.2 for details. It combines
the advantages of agitator-type froth flotation, i.e., high turbulences for efficient particle-
bubble collisions, and column flotation, i.e., reducing entrainment due to the fractionating
effect of the column. Flotation experiments were carried out using simple particle systems
consisting of magnetite as the non-floatable and glass particles with varying morphologies
and with three different wettability levels as the floatable fraction. The wettability of
the glass particles has been adjusted via an esterification reaction with alcohols prior to
flotation, where the resulting particle wettability has been analyzed by optical contour
analysis. Then, having two systems of differently shaped glass particles, where each particle
system is available for three different wettability states, the influence of particle wettability
and morphology on the separation process can be investigated via multivariate stochastic
modeling of morphological particle descriptors. In this way, information regarding the
combined effect of multiple factors on the flotation separation behavior can be obtained.

In particular, the flotation experiments performed in the framework of this paper serve
as basis for demonstrating the use of Tromp functions as a flexible tool for evaluating the
influence of particle wettability and morphology on the separation behavior [13–15]. In
order to achieve this goal, a suitable characterization of the particle systems is necessary,
which can be achieved by determining probability densities of particle descriptors of the
particle systems under consideration. Thus, for each particle system, a representative
fraction of feed material as well as the separated valuable (concentrate) and non-valuable
(tailings) fractions have been imaged using a mineral liberation analyzer.

Recently, multivariate Tromp functions computed by means of non-parametric kernel
density-based estimation have been used to characterize the separation behavior with
respect to multidimensional particle descriptor vectors [13]. However, estimating multivari-
ate probability densities of particle descriptor vectors in this way requires sufficiently large
sample sizes [16]. Therefore, we propose an alternative parametric modeling approach
in order to determine multivariate Tromp functions from scanning electron microscopy-
based image data of the feed and separated fractions, where the underlying multivariate
probability densities of particle descriptor vectors are obtained by utilizing Archimedean
copulas [17,18]. More precisely, these probability densities are modeled by first fitting
(univariate) marginal densities of the individual particle descriptors, followed by the com-
putation of an adequate copula density, which captures the dependencies between the
particle descriptors. For the flotation-based separation process considered in the present pa-
per, the parametric modeling approach for the computation of multivariate Tromp functions
is applied to characterize the influence of changes in particle wettability and morphology
on the behavior of the separation process.

Furthermore, the parametric modeling approach described above is extended by an
optimization routine in order to analyze the behavior of separation processes also in the
case when image measurements are not available for all separated fractions. Another
potential application of this optimization routine is to reduce the measurement effort in a
series of separation experiments for a given feed material and various separated fractions.

The rest of this paper is organized as follows. In Section 2.1, the particle systems are
described from which feed materials for the separation tests have been prepared. The
flotation-based separation process itself is explained in Section 2.2. Then, in Section 2.3,
a description of the microscopy technique follows which is used to generate image data
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for a quantitative analysis of the separation results. Various aspects of multivariate Tromp
functions are considered in Section 2.4. Their values are given by means of multivariate
probability densities of particle descriptor vectors, which are stochastically modeled in
Section 2.5. Section 3 contains the results derived in this paper. They are discussed in
Section 4. Finally, Section 5 concludes.

2. Materials and Methods
2.1. Materials

The particle systems from which feed compositions for the separation tests have been
prepared are visualized in Figure 1. They consist of magnetite representing the non-floatable
material and of glass particles with two different morphologies, spheres and fragments,
serving as floatable material. Ultrafine size fractions of magnetite have been purchased from
Kremer Pigmente, Germany, where an analysis via X-ray diffraction confirmed its purity.
Glass spheres and fragments both consist of soda-lime glass and have been purchased
from VELOX, Germany, as SG7010 and SG3000, respectively. The purchased glass spheres
already had particle sizes below 10 µm (SG7010), whereas for getting glass fragments,
coarser glass spheres (SG3000, 30–50 µm) were milled and the desired particle size fraction
(<10 µm) was obtained by air classification. The corresponding particle size distributions
for all three particle systems, obtained by laser diffraction and represented as probability
densities, are visualized in Figure 1d. This measurement technique assumes that the
observed particles are spherical, which is particularly not the case for magnetite and glass
fragments. Hence, image measurements of the particle systems under consideration as
shown in Figure 1a–c are required to determine the particle shape descriptors.
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Figure 1. SEM images of the floatable fractions of glass spheres (a) and glass fragments (b), and
the non-floatable fraction of magnetite (c); the corresponding particle-size probability density of
volume-equivalent diameter obtained by laser diffraction (d).

To keep the particle systems considered in this paper as simple as possible and to rule
out effects of other flotation reagents during the flotation process, such as collectors or
depressants, the glass particle wettability was adjusted prior to flotation via an esterification
reaction using alcohols. By choosing primary alcohols with differing alkyl chain lengths,
the resulting particle wettability could be adjusted as the hydrophobicity increased along
with the alkyl chain length of the alcohol. To obtain the defined wettability states, the glass
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particles were functionalized using the primary alcohols 1-hexanol (C6, Carl Roth ≥ 98%,
used as received) and 1-decanol (C10, Carl Roth ≥ 99%, used as received). In total, three
different wettability states of glass spheres and glass fragments were used for flotation:
Pristine, unesterified, hydrophilic particles (C0), particles esterified with 1-hexanol (C6)
that exhibit a medium hydrophobicity, and particles esterified with 1-decanol (C10) that
were strongly hydrophobic, as shown in Figure 2 by means of contact angles that were
measured on identically treated glass slides. The resulting particle systems with differing
levels of hydrophobicity have been analyzed extensively with respect to their wettability
and wetting ability using inverse gas chromatography, phase transfer as well as optical
contour analysis, see [19] for details. All flotation experiments have been carried out on a
binary model system, with the glass particles representing the floatable and magnetite the
non-floatable fraction with a weight ratio of 1:9.
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Figure 2. Contact angles of the pristine glass slides (C0) and those esterified with 1-hexanol (C6) and
1-decanol (C10) measured in sessile drop mode via optical contour analysis. The glass slides have the
same chemical composition as the glass particles used in this study and were cleaned and esterified
in the same way as the glass particles.

2.2. Flotation-Based Separation Process

Figure 3 shows the newly designed MultiDimFlot separation apparatus that was used
for all flotation experiments considered in this study. It was designed specifically for
the separation of very fine particles and combines the highly turbulent suspension zone
from mechanical froth flotation using a conventional batch flotation cell (12 cm× 12 cm)
with a bottom-driven rotor-stator system (Magotteaux) and the fractionating effect from
column flotation. Process parameters were the same for all flotation experiments with an
airflow rate of 2 L/ min, rotational speed of 500 min−1, and a superficial gas velocity of
1.7 cm/s. Different column lengths were available, as shown in Figure 3, but all the tests
of this study have been carried out using the longest column length of 100 cm with an
inner diameter of 5 cm. All experiments have been conducted in batch mode using 4.8%
(w/w) pulp density and poly(ethylenglycol) (PEG, Carl Roth) with a molecular weight of
10,000 g/mol as frother. Due to the modification of the particle wettability by esterification
with alcohols before flotation, no conditioning was required prior to the separation process
as no additional chemicals for reactions or adsorption needed to be added. The frother
solution with a PEG concentration of 10−5 M with a background solution of 10−2 M KCl
solution had a pH of 9 after dispersing the particles using an Ultra Turrax (dispersion tool
S25N-25F) from IKA, Germany, for 1 min at 11,000 min−1. Flotation experiments have
been carried out for 15 min with concentrates being taken after 1, 2, 3, 4, 5, 6, 8, 10, 12 and
15 min. Post-processing of the concentrates and tailings included centrifugation to dewater
the products, followed by gravimetric analysis for mass balancing and X-ray fluorescence
(with the S1 TITAN handheld device, Bruker) and mineral liberation analysis of the dried
samples for quantifications of the recoveries and compositions.
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(a) (b)

Figure 3. Schematic drawing of the MultiDimFlot separation apparatus (a) and its implementation in
the lab (b).

2.3. Mineral Liberation Analysis

For a quantitative analysis of separation results, representative fractions of the above
mentioned particle systems prior to and after separation have been imaged using a mineral
liberation analyzer (MLA). More precisely, the particles to be imaged were embedded in
an epoxy resin, followed by grinding and polishing, in order to expose a planar surface
section through the particles. Then, the MLA measurements were performed by deploying
a FEI Quanta 650F (Thermo Fisher Scientific, Waltham, MA, USA) for SEM imaging and
two Bruker Quantax X-Flash 5030 EDS (Bruker Corporation, Billerica, MA, USA) for
energy-dispersive X-ray spectroscopy measurements. The samples were scanned using the
extended electron backscatter diffraction liberation analysis. During imaging, consistent
operating conditions were applied to all the samples with a pixel size of 0.25 µm. In general,
more than 200.000 particles were analyzed during a single MLA image measurement.
Using the MLA software suite, version 3.1.4, we obtained, for each imaged planar section,
a false color image I : W → {0, 1, 2 . . . , }, where the set W ⊂ Z2 of pixels was given by
W = W ′ ∩ Z2 for some rectangular sampling window W ′ ⊂ R2. The pixel values of the
image I provide information about the mineralogical composition of the sample. More
precisely, if I(x) = 0 for some x ∈ W, then the pixel corresponds to the epoxy resin
(background), whereas for I(x) = 1 the MLA system detected a mineral (e.g., magnetite) at
the position of the pixel x. Furthermore, the MLA software suite segmented the image I into
individual particles, i.e., it is possible to extract sets P ⊂ W of pixels associated with planar
section of particles. Thus, together with the mineralogical information provided by the
MLA system, for any given fraction of the particle system (i.e., magnetite, glass fragments
and spheres) we can determine corresponding pairwise disjoint sets P1, . . . , PN ⊂ W for
some integer N > 0, each of which is associated with the planar section of a particle
belonging to the given fraction.

2.4. Multivariate Tromp Functions

The morphology of particles can be described by d-dimensional descriptor vectors
x = (x1, . . . , xd) ∈ Rd, where d > 0 is some integer and the entries of x either characterize
the shape or size of the particles. The entirety of particle descriptor vectors associated with
particles of the feed material observed by MLA measurements can be modeled by a number-
weighted multidimensional probability density, which will be denoted by f f : Rd → [0, ∞)
in the following. Analogously, the descriptor vectors for particles in the concentrate can be
modeled by a number-weighted multidimensional probability density f c : Rd → [0, ∞).
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Then, the number-weighted multivariate Tromp function T : Rd → [0, ∞) (also referred to
as multivariate separation function) is given by

T(x) =


nc

nf

f c(x)
f f(x)

, if f f(x) > 0,

0, if f f(x) = 0,
(1)

for each x ∈ Rd, where nc and nf denote the number of particles in the concentrate and the
feed, respectively. Note that in the case of 2D-image data it is reasonable to use number-
weighted probability densities in order to describe particle systems. However, different
measurement techniques obey varying physical principles which may result in differently
weighted probability densities. For example, when considering aerodynamic lenses for
the separation of airborne particles [20], particle systems in the separation process are
described by mass-weighted probability densities. Thus, Tromp functions are then defined
by mass-weighted probability densities [13,14].

In the following we show how the value T(x) of the Tromp function given by
Equation (1) can be interpreted as the separation probability of a particle having the de-
scriptor vector x, to be separated into the concentrate, and we discuss the equivalence
of number-weighted and mass-weighted Tromp functions, see Section 2.4.1. Then, in
Section 2.4.2 we explain how computational issues can be solved in case of computing
Tromp functions from image measurements. Moreover, in Section 2.4.3 we propose a
method for computing Tromp functions when only partial information about the fractions
in separation processes is available, e.g., when only the feed and a single separated fraction
is measured. In Section 2.4.4, we present a scheme that constrains the set of admissible
particle descriptors for which we compute the separation probability.

2.4.1. Interpretation of Multivariate Tromp Functions as Separation Probabilities

To begin with, we provide a reasoning which shows why the value T(x) of the
Tromp function given by Equation (1) can be interpreted as the separation probability of
a particle having the descriptor vector x, to be separated into the concentrate. Let X be
a d-dimensional random vector, whose probability distribution is given by the density
f f. Thus, X can be interpreted as a (random) particle descriptor vector of the “typical
particle” in the feed. Note that integration of the density f f allows for the computation of
probabilities that the random particle descriptor vector X belongs to some cuboidal sets
B ⊂ Rd, i.e., such probabilities are given by

P(X ∈ B) =
∫

B
f f(x)dx. (2)

Normally, the probability density f f is determined from measurements, see Section 2.5.
Furthermore, let Z be a binary random variable with values in the set {0, 1} such that

the event Z = 1 corresponds to the case where the typical particle is separated into the
concentrate. One method to determine the distribution of Z is to compute the probability
of the event Z = 1, which can be done by considering the ratio of the number of particles
in the concentrate and feed, respectively, i.e.,

P(Z = 1) ≈ nc/nf. (3)

The value of P(Z = 1) can be interpreted as the probability that a particle taken at random
from the feed is separated into the concentrate. Note that the separation outcome typically
depends on particle descriptors (e.g., large particles might have a larger separation probabil-
ity than smaller particles). Therefore, the (conditional) probability P(Z = 1 | X = x) of the
event Z = 1 can change when conditioning it with respect to some specific deterministic
descriptor vector x. The values P(Z = 1 | X = x) for x ∈ Rd can be interpreted as a
separation probability function which assigns each particle with a descriptor vector x its
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corresponding separation probability. In order to determine P(Z = 1 | X = x), we make
use of the probability density f c of descriptor vectors for particles in the concentrate.

More precisely, using the notion of the typical particle X and the separation outcome Z,
the distribution of descriptor vectors for particles in the concentrate is given by conditioning
on the event Z = 1, i.e., by P(X ∈ B | Z = 1) for each cuboidal set B ⊂ Rd. Since
we additionally assumed that the distribution of descriptor vectors associated with the
concentrate has the density f c, we get that

P(X ∈ B | Z = 1) =
∫

B
f c(x)dx. (4)

On the other hand, we can represent such probabilities by

P(X ∈ B | Z = 1) =
P(X ∈ B, Z = 1)

P(Z = 1)
=

1
P(Z = 1)

∫
B
P(Z = 1 | X = x) f f(x)dx, (5)

where the first equation is true due to the definition of conditional probabilities and the
second equation holds due to the law of total probability. In both Equations (4) and (5),
the probability P(X ∈ B | Z = 1) has a representation as an integral on the domain B, for
any cuboidal set B ⊂ Rd. Consequently, we can assume that the integrands coincide, i.e.,
we get

f c(x) =
1

P(Z = 1)
P(Z = 1 | X = x) f f(x) for each x ∈ Rd.

Therefore, we immediately get a formula for the separation probability P(Z = 1 | X = x),
i.e., we get

P(Z = 1 | X = x) = P(Z = 1)
f c(x)
f f(x)

for each x ∈ Rd.

Now, comparing the right-hand side of this equation with the right-hand side of Equation (1),
and taking Equation (3) into account, we get that T(x) ≈ P(Z = 1 | X = x) for each x ∈ Rd.
In other words, the value T(x) of the Tromp function as defined in Equation (1) can be
interpreted as the separation probability.

Note that the computational formula given in Equation (1) requires number-weighted
probability densities f c and f f. However, some measurement techniques yield so-called
mass-weighted probability densities of descriptor vectors. In such a scenario it is a com-
mon approach to determine mass-weighted multivariate Tromp functions which are de-
fined by a (scaled) fraction of mass-weighted probability densities. We now show that
such mass-weighted Tromp functions approximately coincide with the number-weighted
Tromp function given in Equation (1) and, consequently, can also be interpreted as a
separation probability.

Therefore, let m : Rd → [0, ∞) be a function which maps a descriptor vector x
of particles onto their mass m(x), see e.g., [21]. Then, the mass-weighted probability
densities f f

m, f c
m : Rd → [0, ∞) of descriptor vectors of particles in the feed and concentrate,

respectively, are given by

f f
m(x) =

f f(x)m(x)∫
Rd f f(y)m(y)dy

and f c
m(x) =

f c(x)m(x)∫
Rd f c(y)m(y)dy

, (6)

for each x ∈ Rd assuming that
∫
Rd f f(y)m(y)dy and

∫
Rd f c(y)m(y)dy are finite positive

numbers, respectively. Furthermore, the mass-weighted multivariate Tromp function
Tm : Rd → [0, 1] of a separation process is given by

Tm(x) =


mc
mf

f c
m(x)

f f
m(x)

, if f f
m(x) > 0,

0, if f f
m(x) = 0,

(7)
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for each x ∈ Rd, where mc/mf is the yield (i.e., the total mass mc of particles in the
concentrate divided by the total mass mf of particles in the feed).

The Tromp functions T and Tm given in Equations (1) and (7), respectively, take on
similar values , i.e., it holds that Tm(x) ≈ T(x) for each x ∈ Rd. Indeed, inserting the
definitions of the mass-weighted probability densities f f

m and f c
m given in Equation (6) into

Equation (7), we get that

Tm(x) =
mc

mf

∫
Rd m(x) f f(x)dx∫
Rd m(x) f c(x)dx

f c(x)
f f(x)

for each x ∈ Rd.

Note that the total mass mf of particles in the feed can be approximated by the number of par-
ticles nf times the expected mass of particles in the feed which is given by

∫
Rd m(x) f f(x)dx,

i.e., mf ≈ nf
∫
Rd m(x) f f(x)dx. Analogously, we get that mc ≈ nc

∫
Rd m(x) f c(x)dx. Insert-

ing these expressions for mf and mc into Equation (8) we obtain that

Tm(x) ≈
nc
∫
Rd m(x) f c(x)dx

nf
∫
Rd m(x) f f(x)dx

∫
Rd m(x) f f(x)dx∫
Rd m(x) f c(x)dx

f c(x)
f f(x)

=
nc

nf

f c(x)
f f(x)

= T(x), (8)

for each x ∈ Rd.

2.4.2. Reconstructing the Density of Descriptor Vectors for Particles in the Feed

The computation of Tromp functions as quotients of probability densities by means
of Equation (1) or (7) is often problematic because we have to ensure that this function
only takes values between zero and one. When computing Tromp functions via quotients,
numerical instabilities can occur which can cause a Tromp function to take values greater
than one. This is due to a Tromp function being rather sensitive to denominator values
which are close to zero, e.g., when there are relatively few particles with certain descriptor
vectors within the feed, yet such particles can be enriched within the concentrate. In
addition, it should be noted that the image measurements of feed, concentrate and tailings
are only a statistically representative sample for the corresponding particle systems. More
precisely, in theory the union set of particle descriptors corresponding to all particles within
the concentrate and tailings should be equal to the set of particle descriptors associated with
feed particles. However, in image data solely, small traces of feed/concentrate/tailings
particles are observed such that the validity of this equality can be violated.

In order to avoid this issue, it is useful to have in mind that the probability density of
descriptor vectors of particles in the feed can be considered to be a convex combination of
the probability densities f c and f t [15]. Namely, the probability density f f can be given by

f f(x) = λ f c(x) + (1− λ) f t(x), (9)

for all x ∈ Rd with some mixing parameter λ ∈ [0, 1], which describes the ratio of particles
in the concentrate and tailings. In case of number-weighted probability densities, the
mixing parameter λ is given by

λ =
nc

nf
. (10)

In the case of mass-weighted probability densities, this parameter corresponds to the yield
given by the weighting constant in Equation (7).

Using Equation (9), the Tromp function given in Equation (1) can be written as

T(x) =

{
λ · f c(x)

λ f c(x)+(1−λ) f t(x) , if λ f c(x) + (1− λ) f t(x) > 0,

0, if λ f c(x) + (1− λ) f t(x) = 0,
(11)

for all x ∈ Rd. The representation of Tromp functions by Equation (11) has several ad-
vantages, because T(x) can then be computed without information regarding particles in
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the feed. It is enough to obtain image measurements of the concentrate and the tailings.
Moreover, using Equation (11), the Tromp function takes values between zero and one and
its computation is numerically stable, in comparison to the computation of Tromp functions
by means of Equation (1). This is due to the replacement of the critical denominator in
Equation (1) by the robust reconstructed probability density f f given in Equation (9).

2.4.3. Computation of Tromp Functions for Partially Available Separated Fractions

Tromp functions can be computed by means of Equation (11) if image measurements
are available for the concentrate and tailings. However, in practice, MLA measurements of
concentrate or tailings are often unavailable or incomplete. For example, in the flotation-
based separation process described in Section 2.2 (and analyzed in Section 3.2), the problem
arises that the concentrate consists of several fractions of concentrates. Thus, to compute
the Tromp function for the complete concentrate (i.e., the union of all single concentrate
fractions), all concentrate fractions must be mixed in the measurement process to obtain
a single measured fraction for the concentrate. This would lead to a loss of information
regarding the individual concentrate fractions. Alternatively, the probability densities of
the descriptor vectors of particles in the complete concentrate could be computed as a
convex combination of the probability densities of the descriptor vectors of particles in the
individual concentrates. However, this method would be rather time consuming because
for an increasing number of output fractions, the effort required for MLA measurements
and the estimation procedure of the probability densities of particle descriptors for each
individual concentrate increases significantly.

Therefore, we present an approach to compute Tromp functions when no measure-
ments are available for some of the separated fractions by solving a minimization problem.
In particular, we consider the case when image measurements are available only for feed
and tailings, using the probability densities f t and f f instead of f c and f t. To redeem the
numerical issues, which can occur when estimating the probability density f f from image
measurements as described in Section 2.4.2, we exploit the fact that f f can be expressed as
a convex combination of f c and f t, where we replace the (unknown) probability density
f c of descriptor vectors associated with particles in the complete concentrate by some
parametric approximation f̃ c : Rd → [0, ∞). More precisely, we assume that f̃ c is a member
of a parametric family { fθ : θ ∈ Θ} of multivariate probability densities, e.g., the density
of a multivariate normal distribution or a copula-based distribution model as described
in Section 2.5, where Θ ⊂ Rd′ denotes the set of admissible parameters for some integer
d′ ≥ 1. Then, f̃ c can be determined by solving the following minimization problem:

f̃ c = arg min
θ∈Θ

∫
Rd
| f f(x)− (λ fθ(x) + (1− λ) f t(x))|dx, (12)

i.e., the function f̃ c : Rd → [0, ∞) minimizes the integral on the right-hand side of
Equation (12).

Note that the number-weighted mixing parameter λ in Equation (12) cannot be com-
puted directly if there is no information on the concentrate available. Instead we can
determine λ by solving the equation

(1− λ) =
nt

nf
. (13)

We also remark that in case of using Equation (12) to obtain an approximation for f c and
then computing the Tromp function T utilizing Equation (11), T takes values between zero
and one by definition.
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2.4.4. Restriction of Tromp Functions

Formally, Tromp functions are defined for all d-dimensional descriptor vectors x ∈ Rd,
see Equations (1) and (11). However, for descriptor vectors x ∈ Rd such that the corre-
sponding particles are not (or only rarely) observed in the feed, i.e., for which the value of
f f(x) is equal or close to zero, the value of T(x) is not meaningful. Therefore, we present
a scheme that constrains the set of admissible particle descriptors for which we compute
the separation probability T(x). More precisely, we compute the Tromp function only for
descriptor vectors belonging to the set A ⊂ Rd which is given by

A = {x ∈ Rd : f f(x) > ε}, (14)

where ε = inf
{

s ∈ [0, ∞) :
∫

x∈Rd : f f(x)≤s f f(x)dx ≥ q
}

for some q ∈ [0, 1]. Note that the
threshold q can be used to specify how likely it must be that particles with certain descriptor
vectors are observed in the feed for the Tromp function to provide sufficient information
about the separation probability of such particles.

2.5. Stochastic Modeling of Particle Descriptor Vectors

In the rest of this paper we mainly focus on the analysis and modeling of two-
dimensional particle descriptor vectors x ∈ R2.

For particles observed in a planar section of a three-dimensional particle system, it is
possible to compute various size and shape descriptors using the particle-wise segmentation
of 2D images obtained by MLA measurements within some sampling window W ⊂ Z2,
see Section 2.3. A question of particular interest is how such particle descriptors can be
exploited in order to study the influence of particle morphology on separation processes.
Therefore, in Section 2.5.1 we specify a pair of size and shape descriptors which can
be easily determined from planar cross sections of particles. Then, in Section 2.5.2, we
discuss methods for modeling the distribution of single particle descriptors with univariate
probability densities. The parametric copula-based procedure, which is used for modeling
the distribution of pairs of such descriptors, is explained in Section 2.5.3. By applying
the methods given in Sections 2.5.1–2.5.3 to image data acquired before and after the
application of a separation procedure, we can then determine bivariate Tromp functions
for characterizing the behavior of separation processes under consideration, see Section 3.

2.5.1. Size and Shape Descriptors

In order to characterize the size of a particle P′ ⊂ W ′ observed within the sampling
window W ′ ⊂ R2, we determine the area-equivalent diameter of P′ which is given by

dA(P′) = 2

√
A(P′)

π
, (15)

where A(P′) denotes the area of P′. Note that A(P′) is computed from image data by
counting the number of pixels belonging to the correspondingly discretized particle cross-
section P ⊂W.

Furthermore, we determine the so-called minimum and maximum Feret diameters
dmin(P′) and dmax(P′) of P′, by deploying the algorithm given in [22]. More precisely,
dmin(P′) and dmax(P′) are the smallest and largest edge lengths of a minimum rectangular
bounding box B(x∗, y∗, α∗, β∗, θ∗) of P′. Such a bounding box can be determined by solving
the minimization problem

(x∗, y∗, α∗, β∗, θ∗) = arg min
(x,y,α,β,θ)∈R4×[0,π),

0<α≤β,
P′⊂B(x,y,α,β,θ)

α · β, (16)

where B(x, y, α, β, θ) denotes a rectangle with edge lengths 0 < α ≤ β which is rotated by
θ ∈ [0, π) around its center (x, y) ∈ R2. Then, the minimum and maximum Feret diameters
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of P′ are given by dmin(P′) = α∗ and dmax(P′) = β∗, respectively. This provides the aspect
ratio ψ(P′) of P′, which is given by

ψ(P′) =
dmin(P′)
dmax(P′)

. (17)

Note that the aspect ratio ψ defined in Equation (17) is a shape descriptor which allows
us to distinguish between elongated (ψ(P′)� 1) and non-elongated particles (ψ(P′) ≈ 1).
Analogously to the computation of the area of a particle cross-section from image data,
we compute the minimum and maximum Feret diameters dmin(P′) and dmax(P′) of P′ by
rescaling their values with the pixelsize.

2.5.2. Univariate Stochastic Modeling of Single Particle Descriptors

By computing the size and shape descriptors introduced in Section 2.5.1 for all particles
P1, . . . , PN ⊂ W, we obtained a sample of particle descriptor vectors which characterized
the particle system observed in the underlying image I : W → {0, 1, 2, . . .}. More precisely,
we determined the two-dimensional descriptor vectors x(1), . . . , x(N) ∈ R2, where the first
entry was the area-equivalent diameter and the second entry was the aspect ratio of the
corresponding particle, i.e., x(i) = (d(i)A , ψ(i)) for i = 1, . . . , N.

For each entry of the particle descriptor vectors we fitted a univariate probability
density from a parametric family { fθ : θ ∈ Θ} of probability densities fθ : R → [0, ∞)
(e.g., the densities of normal, log-normal, gamma, or beta distributions), where Θ is the
set of admissible parameters, see Table 1. The best fitting density and the corresponding
parameters were chosen by means of the maximum-likelihood method [23].

Table 1. Parametric families of univariate distributions used in Section 3.1 for fitting the marginal
probability densities of the bivariate probability densities f f, f c and f t.

Parametric Family Probability Density

Normal fθ(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 , θ = (µ, σ) ∈ R× (0, ∞)

Log-normal fθ(x) = 1√
2πσ2x2

e−
(log(x)−log(µ))2

2σ2 1(0,∞)(x), θ = (µ, σ) ∈ R× (0, ∞)

Gamma fθ(x) = 1
bkΓ(k) xk−1e

(
− x

b

)
1(0,∞)(x), θ = (k, b) ∈ (0, ∞)2

Beta fθ(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1
1(0,1)(x), θ = (α, β) ∈ (0, ∞)2

In applications it might be not sufficient to only use parametric families of unimodal
probability densities, like those ones mentioned in Table 1. Instead, bimodal densities
might provide better fits, which can be achieved by considering convex combinations
fθ1,θ2 = w fθ1 + (1− w) fθ2 of unimodal probability densities fθ1 , fθ2 : R→ (0, ∞) for some
θ1, θ2 ∈ Θ, where w ∈ (0, 1) is some mixing parameter. However, this increases the number
of model parameters. In order to avoid making the model too complex, while increasing
the likelihood of the fitted distribution, the best fitting distribution was selected according
to the Akaike information criterion [24].

2.5.3. Bivariate Stochastic Modeling of Pairs of Particle Descriptors

The procedure for modeling the distribution of single particle descriptors as stated in
Section 2.5.2 does not capture information about the correlation between the descriptors.
Therefore, to get a more comprehensive probabilistic characterization of the observed
particle system, we fitted a bivariate probability density to the sample of two-dimensional
descriptor vectors x(i) = (d(i)A , ψ(i)) for i = 1, . . . , N. For this, we use the fact that each
bivariate probability density f : R2 → [0, ∞) can be represented in the form

f (x) = f1(x1) f2(x2)c(F1(x1), F2(x2)) , (18)
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for all x = (x1, x2) ∈ R2, where f1, f2 : R → [0, ∞) denote the (univariate) marginal
densities corresponding to f , i.e., f1(x1) =

∫
R f (x1, y2)dy2 and f2(x2) =

∫
R f (y1, x2)dy1

for all x1, x2 ∈ R. Moreover, F1, F2 : R → [0, 1] are the cumulative distribution functions
corresponding to f1 and f2, respectively, and c : [0, 1]2 → [0, ∞) is a bivariate copula density,
i.e., a bivariate probability density with uniform marginal distributions on the unit interval
[0, 1], see e.g., [18].

Analogously to the situation which has been discussed in Section 2.5.2 for the fitting
of univariate probability densities, in the literature various parametric families of bivariate
copula densities have been considered. In the present paper, we focus on parametric
families of so-called Archimedean copulas, namely Clayton, Frank, Gumbel, and Joe
copulas as well as rotated versions of these copula families [18,25], see also Table 2. Then,
by means of maximum-likelihood estimation and using the Akaike information criterion,
we have determined the best fitting bivariate probability density f : R2 → [0, ∞) for the
sample x(i) = (d(i)A , ψ(i)) with i = 1, . . . , N. See also [17,26], where this approach has been
applied for parametric stochastic modeling of similar types of particle-discrete image data.

Table 2. Parametric copula families used in Section 3.1 for fitting the bivariate densities f f, f c, and f t.

Parametric Family Copula Density

Clayton cθ(u1, u2) = (θ + 1)(u1u2)
−(θ−1)(u−θ

1 + u−θ
2 − 1)−

2θ+1
θ , θ ∈ (0, ∞)

Frank cθ(u1, u2) =
θ(1−e−θ)e−θ(u1+u2)

1−e−θ−(1−e−θu1 )(1−e−θu2 )
, θ ∈ (0, ∞)

Gumbel cθ(u1, u2) =
∂2

∂u1∂u2
e−((− log(u1))θ+(− log(u2))θ)

1
θ , θ ∈ (1, ∞)

3. Results

As already mentioned above, wettability properties of particles cannot be observed
in MLA data, but the effect of wettability on the separation behavior of particles can be
analyzed by comparing multivariate Tromp functions. In this section, bivariate Tromp
functions are computed in terms of two particle descriptors: the area-equivalent diameter
and the aspect ratio of particles, which can be determined from image data. More precisely,
we compute Tromp functions for the flotation-based separation process stated in Section 2.2,
which has been performed on two particle systems (spheres and fragments) with three
different levels of wettability. Recall that these wettability scenarios are denoted by C0,
C6, and C10, respectively. Overall, we analyzed the separation process by computing
and analyzing Tromp functions for six different systems of glass particles, where we do
not have full information on the concentrate. Thus, in Section 3.1, we present the results
which have been obtained for fitting bivariate probability densities to various samples
of two-dimensional descriptor vectors of glass particles, exploiting the methods stated
in Sections 2.5.2 and 2.5.3. Then, in Section 3.2, we use the fitted probability densities to
compute and analyze the corresponding Tromp functions.

3.1. Fitted Univariate and Bivariate Probability Densities

Recall that by using f f we denote the probability density of descriptor vectors of the
glass particles observed in the feed. Furthermore, the probability density of descriptor
vectors of particles in the concentrate for unesterified particles will be denoted by f c

C0
, and

for the differently modified particles by f c
C6

and f c
C10

. Analogously, let f t
C0

, f t
C6

and f t
C10

denote the corresponding probability densities of particle descriptor vectors in the tailings.
Since for the separation experiments performed in the framework of this paper we do

not have full information about the complete concentrate, Tromp functions are computed
by means of the minimization procedure stated in Section 2.4.3. For this, we first fit the
probability densities f f, f t

C0
, f t

C6
, and f t

C10
of the area-equivalent diameter and aspect ratio

of particles observed in the image data for feed and tailings, where we use the parametric
(copula-based) distribution models as described in Section 2.5.3, see Tables 3 and 4.
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Table 3. Bivariate probability density f f fitted to samples of descriptor vectors from image data.
The subscript of the parameters indicates whether the parameter corresponds to the first or second
probability density of the mixture of univariate probability densities.

Type of
Particles Descriptor Parametric Family of

Distributions/Copulas Fitted Parameter Values

dA Log-normal-Log-normal mixture µ1 = 2.54, σ1 = 0.13, µ2 = 3.58, σ2 = 0.22, w = 0.25
Spheres ψ Normal-Normal mixture µ1 = 0.89, σ1 = 0.04, µ2 = 0.62, σ2 = 0.15, w = 0.70

(dA, ψ) Gumbel θ = 1.36

dA Log-normal-Log-normal mixture µ1 = 2.18, σ1 = 0.05, µ2 = 2.74, σ2 = 0.15, w = 0.31
Fragments ψ Normal-Normal mixture µ1 = 0.62, σ1 = 0.13, µ2 = 0.86, σ2 = 0.04, w = 0.89

(dA, ψ) Frank θ = 0.55

Table 4. Bivariate probability densities f t
C0

, f t
C6

and f t
C10

fitted to samples of descriptor vectors from
image data. The subscript of the parameters indicates whether the parameter corresponds to the first
or second probability density of the mixture of univariate probability densities.

Type of
Particles Esterification Descriptor Parametric Family of

Distributions/Copulas Fitted Parameter Values

dA Gamma-Log-normal mixture k = 81.91, b = 0.03, µ = 3.51, σ = 0.25, w = 0.22
C0 ψ Normal-Normal mixture µ1 = 0.58, σ1 = 0.12, µ2 = 0.82, σ2 = 0.06, w = 0.71

(dA, ψ) Clayton θ = 0.09
dA Log-normal-Normal mixture µ1 = 0.24, σ2 = 3.11, µ2 = 5.62, σ2 = 1.67, w = 0.93

Spheres C6 ψ Normal-Normal mixture µ1 = 0.77, σ2 = 0.09, µ2 = 0.54, σ2 = 0.10, w = 0.44
(dA, ψ) Clayton θ = 0.07

dA Log-normal-Log-normal mixture µ1 = 0.22, σ2 = 2.96, µ2 = 0.26, σ2 = 5.64, w = 0.84
C10 ψ Beta α = 7.23, β = 4.47

(dA, ψ) Frank θ = 0.99

dA Log-normal-Log-normal mixture µ1 = 2.51, σ1 = 0.14, µ2 = 3.88, σ2 = 0.27, w = 0.32
C0 ψ Normal-Normal mixture µ1 = 0.76, σ1 = 0.09, µ2 = 0.55, σ2 = 0.11, w = 0.38

(dA, ψ) Frank θ = 0.82
dA Log-normal-Log-normal mixture µ1 = 2.43, σ1 = 0.12, µ2 = 3.85, σ2 = 0.27, w = 0.28

Fragments C6 ψ Normal-Normal mixture µ1 = 0.78, σ1 = 0.08, µ2 = 0.55, σ2 = 0.11, w = 0.34
(dA, ψ) Frank θ = 0.78

dA Log-normal-Log-normal mixture µ1 = 4.00, σ1 = 0.26, µ2 = 2.58, σ2 = 0.15, w = 0.62
C10 ψ Normal-Normal mixture µ1 = 0.75, σ1 = 0.09, µ2 = 0.52, σ2 = 0.10, w = 0.43

(dA, ψ) Frank θ = 1.00

Recall that, as stated in Section 2.4.2, the probability density f f can be given by

f f(dA, ψ) = λi f c
Ci
(dA, ψ) + (1− λi) f t

Ci
(dA, ψ), (19)

for all pairs (dA, ψ) ∈ [0, ∞) × [0, 1] and for each i ∈ {0, 6, 10}, where λi is the mixing
parameter corresponding to the wettability scenario Ci, given as the number of particles in
the complete concentrate divided by the number of particles in the feed. The numbers of
particles observed in the image data of feed and tailings for glass spheres and fragments
and for the wettability scenarios C0, C6 and C10 are presented in Table 5, where the number
of particles in the complete concentrate has been determined by means of Equation (13).

Table 5. Number of glass particles in feed, tailings and complete concentrate

Feed Tailings Concentrate
Esterification C0 C6 C10 C0 C6 C10

Spheres 69, 762 3492 1371 486 66, 270 68, 391 69, 276
Fragments 19, 851 4275 3507 1417 15, 576 16, 344 18, 434

From a formal point of view, the probability densities f f, f t
C0

, f t
C6

and f t
C10

could be
computed first from image data and then used to approximately obtain f c

C0
, f c

C6
, and f c

C10
by means of Equation (12). However, this would have the disadvantage that the validity
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of Equation (19) would be violated in the sense that, in general, its right-hand side and,
therefore, also its left-hand side would depend on i ∈ {0, 6, 10}.

To overcome this issue, we only compute the density f c
C0

as suggested in Section 2.4.3
by solving the minimization problem stated in Equation (12), see Table 6. For this, we use
the densities f f and f t

C0
which are obtained from fitting parametric models to the descriptor

vectors extracted from image data for feed and tailings, respectively, where we assume that
the objective function of the minimization problem considered in Equation (12) is from the
same family of parametric distributions as the density f f fitted from image data.

Table 6. Bivariate probability density f c
C0

computed by solving the optimization problem given in
Equation (12). The subscript of the parameters indicates whether the parameter corresponds to the
first or second probability density of the mixture of univariate probability densities.

Glass Particles Descriptors Family of Distributions/
Copula Families Fitted Parameter Values

dA Log-normal-Log-normal mixture µ1 = 2.55, σ1 = 0.13, µ2 = 3.58, σ2 = 0.22, w = 0.25
Spheres ψ Normal-Normal mixture µ1 = 0.89, σ1 = 0.03, µ2 = 0.62, σ2 = 0.14, w = 0.73

(dA, ψ) Gumbel θ = 1.38

dA Log-normal-Log-normal mixture µ1 = 2.19, σ1 = 0.05, µ2 = 2.74, σ2 = 0.12, w = 0.37
Fragments ψ Normal-Normal mixture µ1 = 0.62, σ1 = 0.12, µ2 = 0.86, σ2 = 0.04, w = 0.89

(dA, ψ) Frank θ = 1.00

Afterwards we re-compute f f for the experiment C0 with unesterified particles by
means of Equation (19) for i = 0. The probability density f f obtained in this way is then
used to determine f c

C6
and f c

C10
by solving the equation

λC0 f c
C0
(dA, ψ) + (1− λC0) f t

C0
(dA, ψ) = λCi f c

Ci
(dA, ψ) + (1− λCi ) f t

Ci
(dA, ψ), (20)

for all pairs (dA, ψ) ∈ [0, ∞)× [0, 1] and for each i ∈ {6, 10}. Thus, the probability densities
f c
C6

and f c
C10

are given by

f c
Ci
(dA, ψ) =

λC0 f c
C0
(dA, ψ) + (1− λC0) f t

C0
(dA, ψ)− (1− λCi ) f t

Ci
(dA, ψ)

λCi

, (21)

for all (dA, ψ) ∈ [0, ∞)× [0, 1] and i ∈ {6, 10}.
The algorithm stated above is motivated by the fact that for each of the two mor-

phological particle scenarios considered in this paper (i.e., for spheres and fragments,
respectively) the same feed material is used for the thee wettability scenarios C0, C6, and
C10. Furthermore, the reason for re-computing the density f f for unesterified particles by
means of Equation (19) is that in this case the largest number of glass particles has been
observed in image measurements for the tailings, see Table 5.

In addition, all fitted probability densities are truncated such that only particles with an
area-equivalent diameter and an aspect ratio above and below certain thresholds are taken
into consideration. In this way, we have improved the goodness of the fit of the parametric
models described above. In particular, we have truncated the probability densities of the
area-equivalent diameter of glass spheres to the interval [2, 10] µm, and those of glass
fragments to [2, 8] µm, where the lower threshold results from the resolution limit of
MLA measurements and only very few outliers of particles of both particle systems are
observed with an area-equivalent diameter larger than the corresponding upper threshold.
Analogously, we truncate the probability densities of the aspect ratio for both particle
systems to the interval [0.2, 1], since no particles with an aspect ratio smaller than 0.2 are
observed in the MLA measurements.
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3.2. Computed Bivariate Tromp Functions

Using the probability densities stated in Section 3.1, bivariate Tromp functions are
computed by means of Equation (11). In Figure 4, the Tromp functions are visualized
which have been obtained for spherical (upper row) and fractured glass particles (lower
row), respectively, and for unesterified (left column) as well as for esterified particles of the
wettability scenarios C6 (middle column) and C10 (right column). The bright yellow color
indicates that particles in the feed with corresponding area-equivalent diameter and aspect
ratio are more likely to be separated into the concentrate, while the dark blue color indicates
that a particle with the corresponding descriptor vector is separated into the tailings.

Note that in order to obtain a more meaningful interpretation for the probability
that a particle is separated into the concentrate or the tailings, we computed the Tromp
functions only for pairs (dA, ψ) of descriptor vectors belonging to the set A ⊂ R2 given in
Equation (14), where we put q = 0.01, i.e., we computed the Tromp functions only for pairs
of descriptor vectors corresponding to particles which are likely to be observed in the feed.
The set of pairs (dA, ψ) corresponding to particles which are not observed with sufficiently
high frequency in the feed, i.e., (dA, ψ) 6∈ A, are indicated in the white color in Figure 4.
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Figure 4. Bivariate Tromp functions for spherical (upper row) and fragmented (lower row) glass
particles, and for unesterified particles (left column) as well as for particles with differently modified
levels of hydrophobicity by esterification corresponding to the wettability scenarios C6 (middle
column) and C10 (right column).

A quantitative analysis of the changes of Tromp functions shown in Figure 4, when
passing from left to right columns, was performed by computing the point-wise differences
between the values of the Tromp functions obtained for the experiments with esterified
particles and those obtained for unesterified particles. More precisely, for each particle sys-
tem (spheres, fragments), from the Tromp functions obtained for the wettability scenarios
C6 and C10, respectively, the Tromp function obtained for C0 is subtracted, see Figure 5.

Furthermore, the Tromp functions shown in Figure 4 can be used in order to analyze
the separation uncertainty of the flotation-based separation process considered in the
present paper. For this purpose, for separation processes producing two output fractions,
the Shannon entropy function H : A→ [0, 1] were considered [13,27], which is given by

H(dA, ψ) = −
(

T(dA, ψ) log2(T(dA, ψ)) + Tt(dA, ψ) log2(T
t(dA, ψ))

)
, (22)

for all pairs (dA, ψ) ∈ A, where log2 denotes the logarithm to the basis 2 (i.e., s = 2log2(s) for
all s > 0), and Tt(dA, ψ) = 1− T(dA, ψ) can be interpreted as the probability that a particle
with particle descriptor vector (dA, ψ) ∈ A is separated into the tailings, see Figure 6.
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Figure 5. Point-wise differences between Tromp functions for spherical (upper row) and fragmented
(lower row) particles, where the Tromp functions obtained for the wettability scenarios C6 (left
column) and C10 (right column) are subtracted from the Tromp function obtained for C0.
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Figure 6. Bivariate entropy functions for spherical (upper row) and fragmented (lower row) glass
particles, and for unesterified particles (left column) as well as for particles with differently modified
levels of hydrophobicity by esterification corresponding to the wettability scenarios C6 (middle
column) and C10 (right column).

The values H(dA, ψ) of the entropy function given in Equation (22) can be interpreted
as follows. For pairs (dA, ψ) of descriptors for which H(dA, ψ) is close to zero, there is a
low uncertainty in the separation process, i.e., particles with such descriptor vectors have a
separation probability close to zero or one, which means that such particles are separated
with high probability, either into the concentrate or the tailings. On the other hand, if
H(dA, ψ) is close to one, the separation probability is close to 0.5 and thus, it is uncertain
whether such a particle is separated into the concentrate or the tailings.

Moreover, the mean entropy given by H =
∫

A H(dA, ψ)d(dA, ψ) can be used to com-
pare the uncertainty of different separation experiments for a given feed composition (e.g.,
spherical or fragmented glass particles with magnetite), see Table 7. In this way, it is possible
to analyze the influence of changes in particle wettability on the separation uncertainty.
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Table 7. Mean entropy of the flotation-based separation process for various experimental setups,
which have been performed for two different particle systems (spheres and fragments) with differently
modified wettability scenarios (C0, C6 and C10).

Wettability Scenario Spheres Fragments

C0 0.61 0.54
C6 0.36 0.63
C10 0.28 0.51

4. Discussion

As shown in the previous section, the differently shaped white areas in the upper and
lower rows of Figure 4 indicate significant differences in size and shape of the two systems
of glass particles. The spheres have larger area-equivalent diameters and, not surprisingly,
larger aspect ratios than the fragments. Furthermore, it has been shown that for unesterified
glass spheres (C0) the area-equivalent diameter does not influence the separation behavior
significantly and mainly the aspect ratio is the dominating particle descriptor since all size
fractions are recovered in the concentrate as long as the particles have an aspect ratio of
around 0.8–1.0. If the wettability is now modified and the spheres are strongly hydrophobic
(C10), the significance of the individual particle descriptors of size and shape have less
impact on the separation behavior, since most of the particles (except for particles with
an area-equivalent diameter of about 6–8 µm and an aspect ratio of about 0.4–0.9) were
recovered in the concentrate and the wettability was the dominating separation property.
In the case of glass fragments a different outcome has been observed. The results of the
Tromp functions for fragments with wettability states of C0 and C6 showed that mostly very
fine particles with varying aspect ratios were recovered in the concentrate. An increase in
hydrophobicity (C10) resulted in a higher probability of recovering particles with a slightly
larger area-equivalent diameter, while the aspect ratio still showed no significant influence.

Looking at the point-wise differences of the Tromp functions for esterified particles
in comparison to the Tromp functions for unesterified particles in Figure 5, the changes
of Tromp functions when passing to the wettability scenario C10 have become even more
apparent. While the point-wise differences of Tromp functions for spherical particles show
larger positive and negative variations, the values of Tromp functions for glass fragments
changed only slightly when passing from unesterified particles to esterified particles of
wettability scenario C6. On the other hand, the Tromp functions for fragments changed
much more when passing to C10, in particular for particles with a larger area-equivalent
diameter. Note that when the particles became more hydrophobic, fewer glass particles
were observed in the tailings, see Table 5, i.e., more glass particles were separated into
the concentrate.

For spherical particles, the separation uncertainty expressed by the entropy functions
in the upper rows of Figure 6 was close to zero for particles with a large aspect ratio
(ψ > 0.8), independent of their area-equivalent diameter and for all wetting scenarios. For
particles with a smaller aspect ratio, the separation uncertainty decreased with increasing
hydrophobicity of the particles. The values of mean entropy given in the middle column of
Table 7 for spheres confirmed the trend of globally decreasing separation uncertainty with
increasing hydrophobicity of spherical particles. In contrast to this, the mean separation
uncertainty did not change significantly for fragmented glass particles when passing from
unesterified particles to the wettability scenarios C6 and C10, see Table 7. On the other
hand, we observed that the entropy values H(dA, ψ) for given pairs (dA, ψ) of fragment
descriptors differed locally for different wettability scenarios; see the lower row of Figure 6.
For unesterified particles with area-equivalent diameters larger than 4 µm the entropy
values H(dA, ψ) were small, while for the wettability scenarios C6 and C10 the entropy
values H(dA, ψ) were larger for particles with the same sizes, i.e., the separation uncer-
tainty increased. Thus, it is not sufficient to limit ourselves to the investigation of mean
entropy when analyzing the separation uncertainty. Furthermore, the different behavior
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of the separation uncertainty of the two particle systems (spheres, fragments) showed
that the separation process was influenced differently by the wettability for different
particle morphologies.

It should be noted that the particle descriptors being used in this study may not
accurately represent the true 3D structure of the glass particles due to certain effects being
not observable in 2D image data obtained by MLA. For example, a reason for this can
be that the aspect ratio of some particles can vary greatly depending on the angle of the
image capture, resulting in a potential bias for aspect ratio distributions determined from
2D data. However, despite this limitation, these descriptors still allowed some level of
quantitative structural evaluation of the impact of particle morphology and wettability on
separation behavior.

Furthermore, the results obtained by the optimization procedure proposed in
Section 2.4.3 depended on the accuracy of the probability densities f f, f t

C0
, f t

C6
and f t

C10
computed from image data of the feed and tailings. Since we computed Tromp func-
tions for particles which were mainly enriched into the concentrate, this suggests that
the accuracy of the computed Tromp functions might be further improved by performing
image measurements of feed and concentrate instead of feed and tailings. In this way,
we could obtain a better fit of the required probability densities computed directly from
image data and, thus, gain more accurate results for corresponding Tromp functions, while
maintaining the advantages of the optimization procedure of Section 2.4.3 for reducing the
measurement effort.

5. Conclusions

The analysis of bivariate Tromp functions performed in the present paper provides
an innovative approach for the multidimensional evaluation of the combined influence
of factors like particle wettability, morphology and size on the flotation-based separation
behavior. We proposed a parametric modeling approach in order to determine the Tromp
functions from image data, which have been gained by scanning electron microscopy
measurements for the feed and separated fractions. The underlying bivariate probability
densities of particle descriptor vectors have been fitted to data by utilizing Archimedean
copulas. We extended this modeling approach by an optimization routine in order to
analyze the behavior of separation processes also in the case when image measurements are
not available for all separated fractions. Furthermore, the Tromp functions have been used
in order to analyze the separation uncertainty of the flotation-based separation process,
where the Shannon entropy function is considered.
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