Biome-Specific Estimation of Maximum Air Temperature Using MODIS LST in the São Francisco River Basin
Abstract
1. Introduction
2. Data and Methods
2.1. Types of Biome in the SFRB
2.2. MODIS LST Data
2.3. Site-Based Data
2.4. Data Processing
2.5. Regression Analysis
2.6. Cross-Validation
3. Results
3.1. Datasets
3.2. Regression Analysis
3.3. Cross-Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MBB | Map of Biomes of Brazil |
IBGE | Instituto Brasileiro de Geografia e Estatística |
MMA | Ministério do Meio Ambiente |
LST | Land Surface Temperature |
LST | Land Surface Temperature from the MYD21A1D data product |
Air | maximum air temperature |
RMSE | Root Mean Squared Error |
MAE | Mean Absolute Error |
SFRB | São Francisco River Basin |
TIR bands | Thermal Infrared bands |
SIN grid | Sinusoidal grid |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
INMET | Instituto Nacional de Meteorologia |
BDMEP | Banco de Dados Meteorológicos |
LP DAAC | Land Processes Distributed Active Archive Center |
ERC | European Research Council |
CONFAP | Conselho Nacional das Fundações Estaduais de Amparo à Pesquisa |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico |
References
- Nova, F.V.P.V.; Torres, M.F.A.; Coelho, M.P. Uso e ocupação da terra e indicadores ambientais de impactos negativos: Baixo curso do Rio São Francisco, Estado de Alagoas, Brasil. Bol. Geogr. 2015, 33, 1–14. [Google Scholar] [CrossRef]
- Fernandes, M.M.; de Moura Fernandes, M.R.; Garcia, J.R.; Matricardi, E.A.T.; de Souza Lima, A.H.; de Araújo Filho, R.N.; Gomes Filho, R.R.; Piscoya, V.C.; Piscoya, T.O.F.; Cunha Filho, M. Land use and land cover changes and carbon stock valuation in the São Francisco river basin, Brazil. Environ. Challenges 2021, 5, 100247. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Silva, L.L.; Santos e Silva, C.M.; de Carvalho, G.G. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theor. Appl. Climatol. 2019, 135, 565–576. [Google Scholar] [CrossRef]
- Silva, A.; Pereira, F. Assessment of Drought Occurrence and Severity in the São Francisco River Basin between the years 1961 to 2019. Rev. Geociencias Nordeste 2023, 9, 56–68. [Google Scholar] [CrossRef]
- Damasceno, J.; Oliveira, E.; Pereira, F.; Duan, Z. Assessment of Precipitation Deficit in the São Francisco River Basin from 1998 to 2018. Rev. Bras. Meteorol. 2023, 38, e38230017. [Google Scholar] [CrossRef]
- Oliveira, E.V.S.V.d.; Damasceno, J.H.B.; Pereira, F.F.; Holanda, S.C.d. Avaliação do Desempenho e Limitações do PERSIANN-CDR: Um Estudo de Caso na Bacia do Rio São Francisco: Assessing the Performance and Limitations of PERSIANN-CDR: A Case Study in the São Francisco River Basin. Rev. GeociêNcias Nordeste 2024, 10, 237–243. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Model. Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L. Modeling monthly mean air temperature for Brazil. Theor. Appl. Climatol. 2013, 113, 407–427. [Google Scholar] [CrossRef]
- de Souza, A.; dos Santos, C.M.; Ihaddadene, R.; Cavazzana, G.; Abreu, M.C.; de Oliveira-Júnior, J.F.; Pobocikova, I.; de Gois, G.; Lins, T.M.P. Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil. Model. Earth Syst. Environ. 2022, 8, 647–663. [Google Scholar] [CrossRef]
- de Carvalho Alves, M.; Sanches, L.; de Carvalho, L.G. Geostatistical surfaces of climatological normals of mean air temperature in Minas Gerais. Environ. Monit. Assess. 2022, 194, 1–21. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote. Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Xian, G. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions. Adv. Space Res. 2008, 41, 1861–1869. [Google Scholar] [CrossRef]
- Callejas, I.J.; de Oliveira, A.S.; de Moura Santos, F.M.; Durante, L.C.; Nogueira, M.C.d.J.A.; Zeilhofer, P. Relationship between land use/cover and surface temperatures in the urban agglomeration of Cuiabá-Várzea Grande, Central Brazil. J. Appl. Remote Sens. 2011, 5, 053569. [Google Scholar] [CrossRef]
- Camparotto, L.B.; Blain, G.C.; Giarolla, A.; Adami, M.; de Camargo, M.B. Validation of temperature and rainfall data obtained by remote sensing for the state of São Paulo, Brazil. Rev. Bras. Eng. Agrícola e Ambient. 2013, 17, 665–671. [Google Scholar] [CrossRef]
- Caparoci Nogueira, S.M.; Moreira, M.A.; Lordelo Volpato, M.M. Evaluating precipitation estimates from Eta, TRMM and CHRIPS Data in the south-southeast region of Minas Gerais State—Brazil. Remote Sens. 2018, 10, 313. [Google Scholar] [CrossRef]
- Thomas, C.; Wey, E.; Blanc, P.; Wald, L. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil. Adv. Sci. Res. 2016, 13, 81–86. [Google Scholar] [CrossRef]
- Chaves, M.B.; Farias Pereira, F.; Rivera Escorcia, C.; Cavalcante, N. Assessing Drought Vulnerability in the Brazilian Atlantic Forest Using High-Frequency Data. Meteorology 2024, 3, 262–280. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wu, X.; Chen, Y.; Chen, A.; Schwalm, C.R.; Kimball, J.S. Divergent Response of Vegetation Growth to Soil Water Availability in Dry and Wet Periods Over Central Asia. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005912. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Janatian, N.; Sadeghi, M.; Sanaeinejad, S.H.; Bakhshian, E.; Farid, A.; Hasheminia, S.M.; Ghazanfari, S. A statistical framework for estimating air temperature using MODIS land surface temperature data. Int. J. Climatol. 2017, 37, 1181–1194. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Cai, W.H.; Yang, J. Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China. Remote Sens. 2017, 9, 410. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.; Nunes, J.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, Y.; Li, T.; Cheng, Q.; Zeng, C.; Zhang, L. Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data. Remote Sens. Environ. 2020, 240, 111692. [Google Scholar] [CrossRef]
- dos Santos, R.S. Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102066. [Google Scholar] [CrossRef]
- Liu, J.; Hagan, D.F.T.; Holmes, T.R.; Liu, Y. An Analysis of Spatio-Temporal Relationship between Satellite-Based Land Surface Temperature and Station-Based Near-Surface Air Temperature over Brazil. Remote Sens. 2022, 14, 4420. [Google Scholar] [CrossRef]
- Brito, H.D.; Brito, Y.D.; Assis, W.D.; Ferreira, Y.C.B.; Vasconcelos, R.S.; Rufino, I. Análise temporal da disponibilidade hídrica nos estados beneficiados pela transposição do Rio São Francisco. Rev. Caminhos Geogr. 2020, 21, 102–116. [Google Scholar] [CrossRef]
- CPRM. Atlas Geoquímico da Bacia do Rio São Francisco: Minas Gerais. Serviço Geológico do Brasil—CPRM. Available online: https://rigeo.cprm.gov.br/handle/doc/20939 (accessed on 6 October 2022).
- dos Santos, W.R.; da Rosa Ferraz Jardim, A.M.; de Souza, L.S.B.; de Souza, C.A.A.; de Morais, J.E.F.; Alves, C.P.; do Nascimento Araujo Júnior, G.; da Silva, M.J.; da Silva Salvador, K.R.; da Silva, M.V.; et al. Can changes in land use in a semi-arid region of Brazil cause seasonal variation in energy partitioning and evapotranspiration? J. Environ. Manag. 2024, 367, 121959. [Google Scholar] [CrossRef]
- Santos, C.V.B.; Carvalho, H.F.S.; Silva, M.J.; Moura, M.S.B.d.; Galvincio, J. Uso de Sensoriamento Remoto na análise da temperatura da superfície em áreas de floresta tropical sazonalmente seca. Rev. Bras. Geogr. Física 2020, 13, 941–957. [Google Scholar] [CrossRef]
- Good, E.J.; Ghent, D.J.; Bulgin, C.E.; Remedios, J.J. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. J. Geophys. Res. Atmos. 2017, 122, 9185–9210. [Google Scholar] [CrossRef]
- Andrade, C.; de Souza, I.; da Silva, L. The Future Sustainability of the São Francisco River Basin in Brazil: A Case Study. Sustainability 2024, 16, 5521. [Google Scholar] [CrossRef]
- Chung, J.; Lee, Y.; Jang, W.; Lee, S.; Kim, S. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat Waves. Remote Sens. 2020, 12, 3231. [Google Scholar] [CrossRef]
- Lian, X.; Zeng, Z.; Yao, Y.; Peng, S.; Wang, K.; Piao, S. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature. J. Geophys. Res. Atmos. 2017, 122, 2254–2268. [Google Scholar] [CrossRef]
- Yu, W.; Ma, M.; Wang, X.; Geng, L.; Tan, J.; Shi, J. Evaluation of MODIS LST Products Using Longwave Radiation Ground Measurements in the Northern Arid Region of China. Remote Sens. 2014, 6, 11494–11517. [Google Scholar] [CrossRef]
- Lenoir, J.; Hattab, T.; Pierre, G. Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography 2017, 40, 253–266. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.; Li, X.; Yan, F.; Lyne, V.; Liu, T. Vegetation-induced asymmetric diurnal land surface temperatures changes across global climate zones. Sci. Total. Environ. 2023, 896, 165255. [Google Scholar] [CrossRef]
- Meier, R.; Davin, E.L.; Swenson, S.C.; Lawrence, D.M.; Schwaab, J. Biomass heat storage dampens diurnal temperature variations in forests. Environ. Res. Lett. 2019, 14, 084026. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci. 2011, 116, G3. [Google Scholar] [CrossRef]
- Ma, J.; Shen, H.; Wu, P.; Wu, J.; Gao, M.; Meng, C. Generating gapless land surface temperature with a high spatio-temporal resolution by fusing multi-source satellite-observed and model-simulated data. Remote Sens. Environ. 2022, 278, 113083. [Google Scholar] [CrossRef]
- Liu, H.; Lu, N.; Jiang, H.; Qin, J.; Yao, L. Filling Gaps of Monthly Terra/MODIS Daytime Land Surface Temperature Using Discrete Cosine Transform Method. Remote Sens. 2020, 12. [Google Scholar] [CrossRef]
- Garai, A.; Kleissl, J. Air and Surface Temperature Coupling in the Convective Atmospheric Boundary Layer. J. Atmos. Sci. 2011, 68, 2945–2954. [Google Scholar] [CrossRef]
- Knutti, R.; Rugenstein, M.A.A. Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2015, 373, 20150146. [Google Scholar] [CrossRef]
Code | Longitude | Latitude | Biome |
---|---|---|---|
82,753 | −40.1 | −7.9 | Caatinga |
82,789 | −38.1 | −7.8 | |
82,886 | −39.3 | −8.5 | |
82,890 | −37.0 | −8.4 | |
82,892 | −36.7 | −8.4 | |
82,979 | −42.1 | −9.6 | |
82,983 | −40.5 | −9.4 | |
82,986 | −38.2 | −9.4 | |
82,988 | −37.7 | −9.1 | |
82,989 | −37.9 | −9.3 | |
82,990 | −37.4 | −9.7 | |
82,991 | −37.0 | −9.5 | |
82,995 | −36.8 | −9.7 | |
83,076 | −44.5 | −11.0 | |
83,179 | −43.1 | −11.1 | |
83,182 | −41.8 | −11.3 | |
83,286 | −44.6 | −13.3 | |
83,288 | −43.4 | −13.2 | |
83,338 | −42.8 | −14.9 | |
83,386 | −44.4 | −15.4 | |
83,387 | −43.0 | −15.7 | |
83,388 | −42.9 | −15.2 | |
83,389 | −44.0 | −15.1 | |
83,390 | −44.1 | −15.1 | |
83,395 | −43.3 | −15.8 | |
83,408 | −43.8 | −14.3 | |
83,236 | −45.0 | −12.1 | Cerrado |
83,334 | −46.2 | −14.9 | |
83,379 | −47.3 | −15.5 | |
83,383 | −46.4 | −15.6 | |
83,384 | −46.1 | −15.9 | |
83,428 | −46.9 | −16.4 | |
83,437 | −43.8 | −16.7 | |
83,452 | −43.7 | −16.8 | |
83,479 | −46.9 | −17.2 | |
83,481 | −46.2 | −17.7 | |
83,483 | −44.9 | −17.3 | |
83,533 | −45.4 | −19.7 | |
83,536 | −44.4 | −18.7 | |
83,570 | −45.0 | −19.2 | |
83,578 | −44.3 | −20.0 | |
83,581 | −44.4 | −19.9 | |
83,582 | −46.0 | −20.0 | |
83,586 | −44.1 | −19.5 | |
83,635 | −44.9 | −20.2 | |
83,097 | −36.8 | −10.2 | Mata Atlântica |
83,587 | −43.9 | −19.9 | |
83,632 | −44.1 | −20.0 |
Response Variable: | ||||
---|---|---|---|---|
Maximum Air Temperature From | ||||
INMET Weather Stations | ||||
Biome | Caatinga | Cerrado | Mata Atlântica | Overall |
LST data from the | 0.284 * | 0.372 * | 0.440 * | 0.324 * |
MYD21A1D data product | (0.001) | (0.002) | (0.006) | (0.001) |
Constant | 20.6 * | 17.1 * | 14.4 * | 18.9 * |
(0.058) | (0.067) | (0.209) | (0.041) | |
Observations | 50,540 | 38,238 | 5766 | 94,544 |
Adjusted R2 | 0.46 | 0.54 | 0.49 | 0.52 |
Residual Std. Error | 2.13 | 2.07 | 2.41 | 2.15 |
Actual Data in the Biome: | |||
---|---|---|---|
Predictions of the | Caatinga | Cerrado | Mata Atlântica |
Regression model for the | 2.15 * | 2.09 * | 2.53 * |
entire Basin | (1.69) * | (1.65) * | (2.05) * |
Regression model for the | 2.13 * | 2.14 | 2.66 |
biome Caatinga | (1.67) * | (1.68) | (2.14) |
Regression model for the | 2.23 | 2.07 * | 2.46 |
biome Cerrado | (1.76) | (1.63) * | (1.99) |
Regression model for the | 2.43 | 2.11 | 2.41 * |
biome Mata Atlântica | (1.93) | (1.65) | (1.95) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farias Pereira, F.; Bazilio Chaves, M.; Rivera Escorcia, C.; Farias da Silva Bomfim, J.A.; Santos Silva, M.C. Biome-Specific Estimation of Maximum Air Temperature Using MODIS LST in the São Francisco River Basin. Meteorology 2025, 4, 17. https://doi.org/10.3390/meteorology4030017
Farias Pereira F, Bazilio Chaves M, Rivera Escorcia C, Farias da Silva Bomfim JA, Santos Silva MC. Biome-Specific Estimation of Maximum Air Temperature Using MODIS LST in the São Francisco River Basin. Meteorology. 2025; 4(3):17. https://doi.org/10.3390/meteorology4030017
Chicago/Turabian StyleFarias Pereira, Fábio, Mahelvson Bazilio Chaves, Claudia Rivera Escorcia, José Anderson Farias da Silva Bomfim, and Mayara Camila Santos Silva. 2025. "Biome-Specific Estimation of Maximum Air Temperature Using MODIS LST in the São Francisco River Basin" Meteorology 4, no. 3: 17. https://doi.org/10.3390/meteorology4030017
APA StyleFarias Pereira, F., Bazilio Chaves, M., Rivera Escorcia, C., Farias da Silva Bomfim, J. A., & Santos Silva, M. C. (2025). Biome-Specific Estimation of Maximum Air Temperature Using MODIS LST in the São Francisco River Basin. Meteorology, 4(3), 17. https://doi.org/10.3390/meteorology4030017