Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015)
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, M.; Ohmura, A.; Schär, C.; Müller, G.; Folini, D.; Schwarz, M.; Hakuba, M.Z.; Sanchez-Lorenzo, A. The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data 2017, 9, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A. A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations. Sol. Energy 2018, 168, 2–9. [Google Scholar] [CrossRef]
- Parding, K.; Olseth, J.A.; Liepert, B.G.; Dagestad, K.F. Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway. Theor. Appl. Climatol. 2016, 125, 625–639. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Calbó, J.; Brunetti, M.; Deser, C. Dimming/brightening over the Iberian Peninsula: Trends in sunshine duration and cloud cover and their relations with atmospheric circulation. J. Geophys. Res. Atmos. 2009, 114, D00D09. [Google Scholar] [CrossRef] [Green Version]
- Żmudzka, E. Zmienność Zachmurzenia Nad Polską I Jej Uwarunkowania Cyrkulacyjne (1951–2000); Wydawnictwo Uniwersytetu Warszawskiego: Warsaw, Poland, 2007. [Google Scholar]
- Smirnov, A.; Villevalde, Y.; O’Neill, N.T.; Royer, A.; Tarussov, A. Aerosol optical depth over the oceans: Analysis in terms of synoptic air mass types. J. Geophys. Res. Atmos. 1995, 100, 16639–16650. [Google Scholar] [CrossRef]
- Uscka-Kowalkowska, J. Bezpośrednie Promieniowanie Słoneczne I Jego Ekstynkcja W Atmosferze Na Przykładzie Puław I Papowa Toruńskiego; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Torun, Poland, 2008. [Google Scholar]
- Uscka-Kowalkowska, J. An analysis of the extinction of direct solar radiation on Mt. Kasprowy Wierch, Poland. Atmos. Res. 2013, 134, 175–185. [Google Scholar] [CrossRef]
- Uscka, J. Direct solar radiation and its attenuation by the atmosphere with different air masses in the suburban area of Toruń. Acta Univ. Wratislav. Stud. Geogr. 2003, 75, 268–281. [Google Scholar]
- Nelken, K. Impact of atmospheric circulation on the amount of global solar radiation reaching the Earth’s surface in Belsk (1971-2014). Bad. Fizjogr. VII Ser. A Geogr. Fiz. 2016, 67, 155–168. [Google Scholar] [CrossRef]
- Gkikas, A.; Houssos, E.E.; Hatzianastassiou, N.; Papadimas, C.D.; Bartzokas, A. Synoptic conditions favouring the occurrence of aerosol episodes over the broader Mediterranean basin. Q. J. R. Meteorol. Soc. 2012, 138, 932–949. [Google Scholar] [CrossRef]
- Nilsson, E.D.; Paatero, J.; Boy, M. Effects of air masses and synoptic weather on aerosol formation in the continental boundary layer. Tellus Ser. B Chem. Phys. Meteorol. 2001, 53, 462–478. [Google Scholar] [CrossRef]
- Ponczkowska, A.; Zieliński, T.; Petelski, T.; Markowicz, K.; Chourdakis, G.; Georgoussis, G. Aerosol Optical Depth Measured at Different Coastal Boundary Layers and Its Links with Synoptic-Scale Features. Remote Sens. 2009, 1, 557–576. [Google Scholar] [CrossRef]
- Power, H.C.; Sheridan, S.C.; Senkbeil, J.C. Synoptic climatological influences on the spatial and temporal variability of aerosols over North America. Int. J. Climatol. 2006, 26, 723–741. [Google Scholar] [CrossRef]
- Panziera, L.; Giovannini, L.; Laiti, L.; Zardi, D. The relation between circulation types and regional Alpine climate. Part I: Synoptic climatology of Trentino. Int. J. Climatol. 2015, 35, 4655–4672. [Google Scholar] [CrossRef] [Green Version]
- Parding, K.M.; Liepert, B.G.; Hinkelman, L.M.; Ackerman, T.P.; Dagestad, K.-F.; Olseth, J.A. Influence of Synoptic Weather Patterns on Solar Irradiance Variability in Northern Europe. J. Clim. 2016, 29, 4229–4250. [Google Scholar] [CrossRef]
- Lawrence, E.N. Solar radiation trends and weather patterns. Weather 1972, 27, 320. [Google Scholar] [CrossRef]
- Kulesza, K. Wpływ cyrkulacji atmosferycznej na ilość całkowitego promieniowania słonecznego docierającego do powierzchni ziemi w Polsce w latach 1986–2015 (The influence of atmospheric circulation on the amount of global solar radiation reaching the Earth’s surface in Poland in years 1986–2015). Prz. Geogr. 2020, 92, 341–359. [Google Scholar]
- Degirmendžić, J.; Kożuchowski, K. O drogach i kierunkach adwekcji mas powietrza nad obszar Polski. In Klimatyczne Aspekty Środowiska Geograficznego; Trepińska, J., Olecki, Z., Eds.; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Krakow, Poland, 2006; pp. 339–350. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Bella, D.; Culpepper, J.; Ealy, J.; King, Z.; Skeete, D.; Blaszczak-Boxe, C.S.; Khaimova, J.; Ahmed, N.; Belkalai, A.; Arroyo, I.; et al. Characterization of pollution transport into Texas using OMI and TES satellite, GIS and in situ data, and HYSPLIT back trajectory analyses: Implications for TCEQ State Implementation Plans. Air Qual. Atmos. Health 2016, 9, 569–588. [Google Scholar] [CrossRef]
- Lu, X.; Mao, F.; Pan, Z.; Gong, W.; Wang, W.; Tian, L.; Fang, S. Three-dimensional physical and optical characteristics of aerosols over central China from long-term CALIPSO and HYSPLIT data. Remote Sens. 2018, 10, 314. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, F.; Kamali, S.; Eskandary, M. Tracing dust sources in different atmosphere levels of Tehran using hybrid single-particle lagrangian integrated trajectory (HYSPLIT) model. Sci. J. Pure Appl. Sci. 2014, 3, 559–571. [Google Scholar] [CrossRef]
- Godłowska, J.; Hajto, M.J.; Tomaszewska, A.M. Spatial analysis of air masses backward trajectories in order to identify distant sources of fine particulate matter emission (Analiza przestrzenna wstecznych trajektorii mas powietrza w celu rozpoznania odległych źródeł emisji pyłu drobnego). Arch. Environ. Prot. 2015, 41, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Szkop, A.; Pietruczuk, A. Analysis of aerosol transport over southern Poland in August 2015 based on a synergy of remote sensing and backward trajectory techniques. J. Appl. Remote Sens. 2017, 11, 016039. [Google Scholar] [CrossRef]
- Chai, T.; Crawford, A.; Stunder, B.; Draxler, R.; Stein, A.; Pavolonis, M.J. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals. Atmos. Chem. Phys. 2017, 17, 2865–2879. [Google Scholar] [CrossRef] [Green Version]
- Hurst, T.; Davis, C. Forecasting volcanic ash deposition using HYSPLIT. J. Appl. Volcanol. 2017, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka, O.; Posyniak, M.; Nelken, K.; Markuszewski, P.; Chilinski, M.T.; Czyzewska, D.; Lisok, J.; Markowicz, K.M. Study of the vertical variability of aerosol properties based on cable cars in-situ measurements. Atmos. Pollut. Res. 2017, 8, 968–978. [Google Scholar] [CrossRef]
- Jędruszkiewicz, J.; Zieliński, M. Zróżnicowanie wysokich dobowych sum opadów w Łodzi i okolicach na tle cyrkulacji atmosferycznej (Variability in high daily precipitation sums in Łódź and its surroundings in relation to atmospheric circulation). Acta Geogr. Lodz. 2016, 104, 201–211. [Google Scholar]
- Miller, J.M.; Moody, J.L.; Harris, J.M.; Gaudry, A. A 10-year trajectory flow climatology for Amsterdam Island, 1980–1989. Atmos. Environ. Part A Gen. Top. 1993, 27, 1909–1916. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. Synoptyczne uwarunkowania intensywnych opadów śniegu w wybranych regionach Europy (Synoptic conditions of heavy snowfall in selected regions of Europe). Prz. Geogr. 2014, 86, 365–380. [Google Scholar] [CrossRef]
- Draxler, R.R. How do I Estimate the Absolute (in km) and Relative (%) Errors when Using the Hysplit4 Trajectory Model? Where does the Error Mostly Come from (e.g., Truncation Error, Interpolation Error or Wind Field Error)? 2019. Available online: https://hysplitbbs.arl.noaa.gov/viewtopic.php?f=27&t=2368 (accessed on 28 November 2022).
- Stohl, A. Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Su, L.; Yuan, Z.; Fung, J.C.H.; Lau, A.K.H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records. J. Geophys. Res. Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Kulesza, K. Spatiotemporal variability and trends in global solar radiation over Poland based on satellite-derived data (1986–2015). Int. J. Climatol. 2020, 40, 6526–6543. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Carslaw, D.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Le Cam, L.M., Neyman, J., Eds.; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Abdalmogith, S.S.; Harrison, R.M. The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK. Atmos. Environ. 2005, 39, 6686–6695. [Google Scholar] [CrossRef] [Green Version]
- Borge, R.; Lumbreras, J.; Vardoulakis, S.; Kassomenos, P.; Rodrıguez, E. Analysis of long-range transport influences on urban PM 10 using two-stage atmospheric trajectory clusters. Atmos. Environ. 2007, 41, 4434–4450. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Handbook of the Philosophy of Science, Philosophy of Statistics; Bandyopadhyay, P.S., Forster, M.R., Eds.; North-Holland Publishing: Amsterdam, The Netherlands, 2011; Volume 7, pp. 583–603. [Google Scholar] [CrossRef]
- Bai, Z.; Choi, K.P.; Fujikoshi, Y. Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis. Ann. Stat. 2018, 46, 1050–1076. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, R. Finding Groups in Data: An introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Degirmendžić, J.; Kożuchowski, K. Szlaki niżów śródziemnomorskich nad Europą Środkowo-Wschodnią a opady w Polsce (Trajectories of Mediterranean lows over Central and Eastern Europe and precipitation in Poland). Prz. Geogr. 2015, 87, 477–496. [Google Scholar] [CrossRef]
- Kożuchowski, K. Meteorologia I Klimatologia; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2012. [Google Scholar]
- Przybylak, R.; Maszewski, R. Zmienność cyrkulacji atmosferycznej w regionie Bydgosko-Toruńskim w latach 1881–2005. (Atmospheric circulation variability in Bydgoszcz-Toruń area in the period 1881–2005). Acta Agrophys. 2009, 14, 427–447. [Google Scholar]
- Wanner, H.; Brönnimann, S.; Casty, C.; Gyalistras, D.; Luterbacher, J.; Schmutz, C.; Stephenson, D.B.; Xoplaki, E. North Atlantic Oscillation—Concepts And Studies. Surv. Geophys. 2001, 22, 321–381. [Google Scholar] [CrossRef]
- Kulesza, K. Influence of air pressure patterns over Europe on solar radiation variability over Poland (1986–2015). Int. J. Climatol. 2021, 41, E354–E367. [Google Scholar] [CrossRef]
Height above Ground Level | Cluster | |||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
3000 | a (MJ·m−2·day−1) | 10.29 | 11.33 | 9.31 | 6.37 | 11.42 | 12.08 | 12.74 |
f (%) | 17.2 | 19.0 | 17.8 | 7.6 | 14.6 | 13.7 | 10.0 | |
1500 | a (MJ·m−2·day−1) | 10.41 | 11.60 | 9.03 | 6.09 | 11.49 | 12.21 | 11.96 |
f (%) | 17.1 | 20.5 | 15.6 | 7.9 | 13.7 | 13.9 | 11.3 | |
500 | a (MJ·m−2·day−1) | 10.81 | 11.00 | 9.15 | 6.58 | 11.43 | 12.70 | 11.09 |
f (%) | 17.5 | 20.9 | 14.2 | 7.8 | 12.2 | 14.1 | 13.3 |
Season of the Year | Cluster | |||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
III-V | a (MJ·m−2·day−1) | 13.73 | 13.73 | 13.42 | 11.51 | 14.57 | 15.39 | 15.93 |
f (%) | 17.3 | 21.7 | 17.2 | 7.4 | 15.8 | 14.0 | 6.6 | |
VI-VIII | a (MJ·m−2·day−1) | 17.05 | 18.46 | 19.14 | 18.66 | 18.98 | 19.29 | 18.93 |
f (%) | 14.5 | 21.5 | 14.9 | 10.0 | 14.4 | 12.8 | 11.9 | |
IX-XI | a (MJ·m−2·day−1) | 6.30 | 6.83 | 6.43 | 6.10 | 7.19 | 7.60 | 9.47 |
f (%) | 17.3 | 17.3 | 19.2 | 8.5 | 14.8 | 12.6 | 10.4 | |
XII-II | a (MJ·m−2·day−1) | 2.92 | 2.78 | 2.68 | 2.68 | 2.87 | 3.01 | 3.56 |
f (%) | 17.7 | 18.4 | 22.7 | 9.3 | 12.9 | 13.7 | 5.3 |
Season of the Year | Cluster | |||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
III-V | a (MJ·m−2·day−1) | 26.09 | 26.60 | 26.44 | 26.60 | 26.32 | 26.29 | 26.15 |
f (%) | 10.9 | 21.0 | 21.7 | 20.3 | 15.2 | 2.9 | 8.0 | |
VI-VIII | a (MJ·m−2·day−1) | 28.31 | 28.40 | 28.65 | 28.42 | 28.40 | 28.40 | 28.22 |
f (%) | 8.0 | 18.1 | 14.5 | 15.9 | 21.0 | 18.1 | 4.4 | |
IX-XI | a (MJ·m−2·day−1) | 17.98 | 17.16 | 17.10 | 17.67 | 17.56 | 17.74 | 17.81 |
f (%) | 16.9 | 19.8 | 10.3 | 14.7 | 20.6 | 5.9 | 11.8 | |
XII-II | a (MJ·m−2·day−1) | 8.01 | 7.88 | 8.21 | 8.06 | 8.07 | 8.48 | 7.31 |
f (%) | 25.2 | 15.6 | 17.0 | 18.5 | 12.6 | 7.4 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulesza, K. Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015). Meteorology 2023, 2, 37-51. https://doi.org/10.3390/meteorology2010003
Kulesza K. Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015). Meteorology. 2023; 2(1):37-51. https://doi.org/10.3390/meteorology2010003
Chicago/Turabian StyleKulesza, Kinga. 2023. "Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015)" Meteorology 2, no. 1: 37-51. https://doi.org/10.3390/meteorology2010003
APA StyleKulesza, K. (2023). Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015). Meteorology, 2(1), 37-51. https://doi.org/10.3390/meteorology2010003