Growth Analysis of Methylotuvimicrobium buryatense 5GB1C and Its Utilization for Treating Low Methane Concentrations in a Packed-Bed Column Reactor
Abstract
1. Introduction
2. Results
2.1. M. buryatense 5GB1C Shows a Broad Optimal Temperature Range for Growth at 500 ppm CH4
2.2. Diluted Liquid Medium Improves M. buryatense 5GB1C Growth at 500 ppm
2.3. M. buryatense 5GB1C Is Capable of CH4 Removal in a Packed-Bed Column Reactor
3. Discussion
4. Materials and Methods
4.1. Bacterial Strain, Growth Medium, and Cell Cultivation
4.2. Flow-Through System for Growth Analysis
4.3. Packed-Bed Column Experiments
4.4. Measurements of Growth Rates, CH4 Uptake Rates, Removal Efficiency (RE), and Elimination Capacity (EC), and Statistical Tests
4.5. Biomass Removal from Cellulose Beads
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tollefson, J. Earth Shattered Heat Records in 2023 and 2024: Is Global Warming Speeding Up? Nature 2025. [Google Scholar] [CrossRef]
- WMO Confirms 2024 as Warmest Year on Record at about 1.55 °C above Pre-Industrial Level. Available online: https://wmo.int/news/media-centre/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level (accessed on 15 January 2025).
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R. Climate Change 2022: Mitigation of Climate Change. Contrib. Work. Group III Sixth Assess. Rep. Intergov. Panel Clim. Change 2022, 10, 9781009157926. [Google Scholar]
- Balcombe, P.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. Methane Emissions: Choosing the Right Climate Metric and Time Horizon. Environ. Sci. Process Impacts 2018, 20, 1323–1339. [Google Scholar] [CrossRef]
- Archer, D.; Eby, M.; Brovkin, V.; Ridgwell, A.; Cao, L.; Mikolajewicz, U.; Caldeira, K.; Matsumoto, K.; Munhoven, G.; Montenegro, A.; et al. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annu. Rev. Earth Planet. Sci. 2009, 37, 117–134. [Google Scholar] [CrossRef]
- Wang, J.; He, Q.P. Methane Removal from Air: Challenges and Opportunities. Methane 2023, 2, 404–414. [Google Scholar] [CrossRef]
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristov, A.N.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Hamburg, S.P. Acting Rapidly to Deploy Readily Available Methane Mitigation Measures by Sector Can Immediately Slow Global Warming. Environ. Res. Lett. 2021, 16. [Google Scholar] [CrossRef]
- Warszawski, L.; Kriegler, E.; Lenton, T.M.; Gaffney, O.; Jacob, D.; Klingenfeld, D.; Koide, R.; Costa, M.M.; Messner, D.; Nakicenovic, N.; et al. All Options, Not Silver Bullets, Needed to Limit Global Warming to 1.5 °C: A Scenario Appraisal. Environ. Res. Lett. 2021, 16. [Google Scholar] [CrossRef]
- Abernethy, S.; Kessler, M.I.; Jackson, R.B. Assessing the Potential Benefits of Methane Oxidation Technologies Using a Concentration-Based Framework. Environ. Res. Lett. 2023, 18. [Google Scholar] [CrossRef]
- Wu, L.; Fan, W.; Wang, X.; Lin, H.; Tao, J.; Liu, Y.; Deng, J.; Jing, L.; Dai, H. Methane Oxidation over the Zeolites-Based Catalysts. Catalysts 2023, 13. [Google Scholar] [CrossRef]
- Mao, J.; Liu, H.; Cui, X.; Zhang, Y.; Meng, X.; Zheng, Y.; Chen, M.; Pan, Y.; Zhao, Z.; Hou, G.; et al. Direct Conversion of Methane with O2 at Room Temperature over Edge-Rich MoS2. Nat. Catal. 2023, 6, 1052–1061. [Google Scholar] [CrossRef]
- Lundberg, D.J.; Kim, J.; Tu, Y.-M.; Ritt, C.L.; Strano, M.S. Concerted Methane Fixation at Ambient Temperature and Pressure Mediated by an Alcohol Oxidase and Fe-ZSM-5 Catalytic Couple. Nat. Catal. 2024, 7, 1359–1371. [Google Scholar] [CrossRef]
- Krogsbøll, M.; Russell, H.S.; Johnson, M.S. A High Efficiency Gas Phase Photoreactor for Eradication of Methane from Low-Concentration Sources. Environ. Res. Lett. 2023, 19. [Google Scholar] [CrossRef]
- Iversen, N.; Roslev, P. Mitigation of Atmospheric and Elevated Methane by Photochemical Oxidation at Ambient Conditions: Photochemical Methane Oxidation. Sci. Total Environ. 2025, 976. [Google Scholar] [CrossRef]
- Krogsbøll, M.; Rezaei, M.; Fogde, N.; Weiss, N.D.; Russell, H.S.; Feilberg, A.; Johnson, M.S. Efficient Mitigation of Dilute Methane, Ammonia, and Odor in Ventilation Air from Cow and Pig Barns and a Biogas Plant: Photoreactor Field Demonstration. ACS EST Air 2025. [Google Scholar] [CrossRef]
- Lidstrom, M.E. Direct Methane Removal from Air by Aerobic Methanotrophs. Cold Spring Harb Perspect. Biol. 2024, 16, a041671. [Google Scholar] [CrossRef]
- He, L.; Lidstrom, M.E. Utilisation of Low Methane Concentrations by Methanotrophs. In Advances in Microbial Physiology; Academic Press: Cambridge, MA, USA, 2024; Volume 85, pp. 57–96. [Google Scholar]
- Hamilton, R.; Griffith, N.; Salamon, P.; Handler, R.; Kalyuzhnaya, M.G. Living Emission Abolish Filters (LEAFs) for Methane Mitigation: Design and Operation. Environ. Res. Lett. 2024, 19, 054057. [Google Scholar] [CrossRef]
- Josiane, N.; Michèle, H. The Influence of the Gas Flow Rate during Methane Biofiltration on an Inorganic Packing Material. Can. J. Chem. Eng. 2009, 87, 136–142. [Google Scholar] [CrossRef]
- Nikiema, J.; Girard, M.; Brzezinski, R.; Heitz, M. Biofiltration of Methane Using an Inorganic Filter Bed: Influence of Inlet Load and Nitrogen Concentration. Can. J. Civ. Eng. 2009, 36, 1903–1910. [Google Scholar] [CrossRef]
- Girard, M.; Ramirez, A.A.; Buelna, G.; Heitz, M. Biofiltration of Methane at Low Concentrations Representative of the Piggery Industry-Influence of the Methane and Nitrogen Concentrations. Chem. Eng. J. 2011, 168, 151–158. [Google Scholar] [CrossRef]
- La, H.; Hettiaratchi, J.P.A.; Achari, G.; Dunfield, P.F. Biofiltration of Methane. Bioresour. Technol. 2018, 268, 759–772. [Google Scholar] [CrossRef]
- Cáceres, M.; Dorado, A.D.; Gentina, J.C.; Aroca, G. Oxidation of Methane in Biotrickling Filters Inoculated with Methanotrophic Bacteria. Environ. Sci. Pollut. Res. 2017, 24, 25702–25712. [Google Scholar] [CrossRef]
- Yoon, S.; Carey, J.N.; Semrau, J.D. Feasibility of Atmospheric Methane Removal Using Methanotrophic Biotrickling Filters. Appl. Microbiol. Biotechnol. 2009, 83, 949–956. [Google Scholar] [CrossRef]
- Knief, C.; Dunfield, P.F. Response and Adaptation of Different Methanotrophic Bacteria to Low Methane Mixing Ratios. Environ. Microbiol. 2005, 7, 1307–1317. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, Y.; Bodelier, P.L.E.; Conrad, R.; Jia, Z. Conventional Methanotrophs Are Responsible for Atmospheric Methane Oxidation in Paddy Soils. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Baani, M.; Liesack, W. Two Isozymes of Particulate Methane Monooxygenase with Different Methane Oxidation Kinetics Are Found in Methylocystis Sp. Strain SC2. Proc. Natl. Acad. Sci. USA 2008, 105, 10203–10208. [Google Scholar] [CrossRef]
- Tveit, A.T.; Hestnes, A.G.; Robinson, S.L.; Schintlmeister, A.; Dedysh, S.N.; Jehmlich, N.; Von Bergen, M.; Herbold, C.; Wagner, M.; Richter, A.; et al. Widespread Soil Bacterium That Oxidizes Atmospheric Methane. Proc. Natl. Acad. Sci. USA 2019, 116, 8515–8524. [Google Scholar] [CrossRef] [PubMed]
- Schmider, T.; Hestnes, A.G.; Brzykcy, J.; Schmidt, H.; Schintlmeister, A.; Roller, B.R.K.; Teran, E.J.; Söllinger, A.; Schmidt, O.; Polz, M.F.; et al. Physiological Basis for Atmospheric Methane Oxidation and Methanotrophic Growth on Air. Nat. Commun. 2024, 15. [Google Scholar] [CrossRef]
- He, L.; Groom, J.D.; Wilson, E.H.; Fernandez, J.; Konopka, M.C.; Beck, D.A.C.; Lidstrom, M.E. A Methanotrophic Bacterium to Enable Methane Removal for Climate Mitigation. Proc. Natl. Acad. Sci. USA 2023, 120, e2310046120. [Google Scholar] [CrossRef] [PubMed]
- Gilman, A.; Laurens, L.M.; Puri, A.W.; Chu, F.; Pienkos, P.T.; Lidstrom, M.E. Bioreactor Performance Parameters for an Industrially-Promising Methanotroph Methylomicrobium Buryatense 5GB1. Microb. Cell Fact. 2015, 14, 182–189. [Google Scholar] [CrossRef]
- Kaluzhnaya, M.; Khmelenina, V.; Eshinimaev, B.; Suzina, N.; Nikitin, D.; Solonin, A.; Lin, J.-L.; Mcdonald, I.; Murrell, C.; Trotsenko, Y.; et al. Taxonomic Characterization of New Alkaliphilic and Alkalitolerant Methanotrophs from Soda Lakes of the Southeastern Transbaikal Region and Description of Methylomicrobium Buryatense sp.Nov. Syst. Appl. Microbiol. 2001, 24, 166–176. [Google Scholar] [CrossRef]
- Tveit, A.T.; Söllinger, A.; Rainer, E.M.; Didriksen, A.; Hestnes, A.G.; Motleleng, L.; Hellinger, H.J.; Rattei, T.; Svenning, M.M. Thermal Acclimation of Methanotrophs from the Genus Methylobacter. ISME J. 2023, 17, 502–513. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Saravanan, N.; Cirés, S.; Alvarez-Roa, C.; Razaghi, A.; Chidambarampadmavathy, K.; Velu, C.; Subashchandrabose, G.; Heimann, K. Culture Scale-up and Immobilisation of a Mixed Methanotrophic Consortium for Methane Remediation in Pilot-Scale Bio-Filters. Environ. Technol. 2017, 38, 474–482. [Google Scholar] [CrossRef]
- Available online: https://www.rengo.co.jp/english/products/functional/biscp.html (accessed on 28 June 2023).
- El Abbadi, S.H.; Sherwin, E.D.; Brandt, A.R.; Luby, S.P.; Criddle, C.S. Displacing Fishmeal with Protein Derived from Stranded Methane. Nat. Sustain. 2022, 5, 47–56. [Google Scholar] [CrossRef]
- Landgren, W.; Lidstrom, M.; Handler, R.; Shonnard, D. Treating Low-Concentration Methane Emissions via a Methanotroph-Based Biotrickling Filter: Techno-Economic and Life Cycle Assessments. Methane 2025. accepted. [Google Scholar]
- Abernethy, S.; O’Connor, F.M.; Jones, C.D.; Jackson, R.B. Methane Removal and the Proportional Reductions in Surface Temperature and Ozone. Philos. Trans. R. Soc. A 2021, 379. [Google Scholar] [CrossRef]
- The National Academics Press. E A Research Agenda Toward Atmospheric Methane Removal. In National Academies of Sciences and Medicine; The National Academics Press: Washington, DC, USA, 2024. [Google Scholar]
- Subraveti, S.G.; Anantharaman, R. Methane Enrichment from Dilute Sources: Performance Limits and Implications for Methane Removal and Abatement. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Luis Meraz, J.; Dubrawski, K.L.; El Abbadi, S.H.; Choo, K.-H.; Criddle, C.S. Membrane and Fluid Contactors for Safe and Efficient Methane Delivery in Methanotrophic Bioreactors. J. Environ. Eng. 2020, 146, 03120006. [Google Scholar] [CrossRef]
- Jo, J.H.; Park, J.H.; Kim, B.K.; Kim, S.J.; Park, C.M.; Kang, C.K.; Choi, Y.J.; Kim, H.; Lee, E.Y.; Moon, M.; et al. Improvement of Succinate Production from Methane by Combining Rational Engineering and Laboratory Evolution in Methylomonas sp. DH-1. Microb Cell Fact. 2024, 23, 297. [Google Scholar] [CrossRef] [PubMed]
- Groom, J.D.; Lidstrom, M.E. Cultivation Techniques to Study Lanthanide Metal Interactions in the Haloalkaliphilic Type I Methanotroph “Methylotuvimicrobium buryatense” 5GB1C. In Methods in Enzymology; Academic Press Inc.: Cambridge, MA, USA, 2021; Volume 650, pp. 237–259. ISBN 9780128238561. [Google Scholar]
- He, L.; Fu, Y.; Lidstrom, M.E. Quantifying Methane and Methanol Metabolism of “Methylotuvimicrobium Buryatense” 5GB1C under Substrate Limitation. mSystems 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Neidhardt, F.C.; Ingraham, J.L.; Schaechter, M. Physiology of the Bacterial Cell: A Molecular Approach; Sinauer Associates: Sunderland, MA, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Kern, N.E.; Stolyar, S.; Lidstrom, M.E. Growth Analysis of Methylotuvimicrobium buryatense 5GB1C and Its Utilization for Treating Low Methane Concentrations in a Packed-Bed Column Reactor. Methane 2025, 4, 22. https://doi.org/10.3390/methane4040022
He L, Kern NE, Stolyar S, Lidstrom ME. Growth Analysis of Methylotuvimicrobium buryatense 5GB1C and Its Utilization for Treating Low Methane Concentrations in a Packed-Bed Column Reactor. Methane. 2025; 4(4):22. https://doi.org/10.3390/methane4040022
Chicago/Turabian StyleHe, Lian, Naomi E. Kern, Sergey Stolyar, and Mary E. Lidstrom. 2025. "Growth Analysis of Methylotuvimicrobium buryatense 5GB1C and Its Utilization for Treating Low Methane Concentrations in a Packed-Bed Column Reactor" Methane 4, no. 4: 22. https://doi.org/10.3390/methane4040022
APA StyleHe, L., Kern, N. E., Stolyar, S., & Lidstrom, M. E. (2025). Growth Analysis of Methylotuvimicrobium buryatense 5GB1C and Its Utilization for Treating Low Methane Concentrations in a Packed-Bed Column Reactor. Methane, 4(4), 22. https://doi.org/10.3390/methane4040022