The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell
Abstract
1. Introduction
2. Results and Discussion
2.1. MES Operation with Bi-Coated Conductive Biorings
2.2. MES Operation with Carbon Felt-Coated NiFeMn and NiFeSn
2.3. MES Operation with 3D Lattice Coated with NiFeMn and NiFeSn
2.4. Cyclic Voltammetry
2.5. Cathode Surface Characterization
3. Materials and Methods
3.1. Analytical Measurements
3.2. MES Cell Design and Operation
3.3. Electrochemical Measurements
3.4. Catalyst Electrodeposition and Surface Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quraishi, M.; Wani, K.; Pandit, S.; Gupta, P.K.; Rai, A.K.; Lahiri, D.; Jadhav, D.A.; Ray, R.R.; Jung, S.P.; Thakur, V.K.; et al. Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. Fermentation 2021, 7, 291. [Google Scholar] [CrossRef]
- Xiaomei, Z.; Rujing, L.; Jun, X.; Yingying, H.; Xinying, Z.; Li, X. Enhanced methane production by bimetallic metal–organic frameworks (MOFs) as cathode in an anaerobic digestion microbial electrolysis cell. Chem. Eng. J. 2022, 440, 135799. [Google Scholar] [CrossRef]
- Amen, T.W.; Eljamal, O.; Khalil, A.M.; Sugihara, Y.; Matsunaga, N. Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles. Chem. Eng. Process.-Process Intensif. 2018, 130, 253–261. [Google Scholar] [CrossRef]
- Nwanebu, E.; Omanovic, S.; Hrapovic, S.; Vidales, A.G.; Tartakovsky, B. Carbon dioxide conversion to acetate and methane in a microbial electrosynthesis cell employing an electrically-conductive polymer cathode modified by nickel-based coatings. Int. J. Hydrogen Energy 2021, 47, 203–215. [Google Scholar] [CrossRef]
- Tahir, K.; Miran, W.; Jang, J.; Woo, S.H.; Lee, D.S. Enhanced product selectivity in the microbial electrosynthesis of butyrate using a nickel ferrite-coated biocathode. Environ. Res. 2021, 196, 110907. [Google Scholar] [CrossRef]
- Fu, X.; Jin, X.; Pan, C.; Ye, R.; Wang, Q.; Wang, H.; Lu, W. Enhanced butyrate production by transition metal particles during the food waste fermentation. Bioresour. Technol. 2019, 291, 121848. [Google Scholar] [CrossRef]
- Bian, B.; Yu, N.; Akbari, A.; Shi, L.; Zhou, X.; Xie, C.; Saikaly, P.E.; Logan, B.E. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell. Water Res. 2024, 259, 121815. [Google Scholar] [CrossRef]
- Gharbi, R.; Omanovic, S.; Hrapovic, S.; Tartakovsky, B. The reduction of carbon dioxide to methane and volatile fatty acids in a microbial electrosynthesis cell using a NiFeSn-coated conductive polymer cathode. J. Power Sources 2025, 646, 237182. [Google Scholar] [CrossRef]
- Anwer, A.H.; Khan, M.D.; Khan, N.; Nizami, A.S.; Rehan, M.; Khan, M.Z. Development of novel MnO2 coated carbon felt cathode for microbial electroreduction of CO2 to biofuels. J. Environ. Manag. 2019, 249, 109376. [Google Scholar] [CrossRef]
- Das, S.; Das, S.; Ghangrekar, M.M. Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration. Process Biochem. 2021, 101, 237–246. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhang, K.; Li, X.L.; Song, T.-S.; Xie, J. Sn promotes formate production to enhance microbial electrosynthesis of acetate via indirect electron transport. Biochem. Eng. J. 2023, 192, 108842. [Google Scholar] [CrossRef]
- Tian, S.; Wang, H.; Dong, Z.; Yang, Y.; Yuan, H.; Huang, Q.; Song, T.-S.; Xie, J. Mo2C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO2 reduction. Biotechnol. Biofuels 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wu, J.; Kjelleberg, S.; Loo, J.; Zhang, Q. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells. Small 2015, 11, 3440–3443. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Yuan, A.; Khan, A.; Khan, S.; Khan, S.; Shah, S.A.; Yaseen, W.; Cui, Y.; Shen, X.; Wang, X. Efficient Visible-Light Activities of TiO2 decorated and Cr3+ incorporated-porous SmFeO3 for CO2 conversion and 4-chlorophenol degradation. Surf. Interfaces 2022, 34, 102358. [Google Scholar] [CrossRef]
- Chang, H.; Khan, I.; Yuan, A.; Khan, S.; Sadiq, S.; Khan, A.; Shah, S.A.; Chen, L.; Humayun, M.; Usman, M. Polyarylimide-based COF/MOF nanoparticle hybrids for CO2 conversion, hydrogen generation, and organic pollutant degradation. ACS Appl. Nano Mater. 2024, 7, 10451–10465. [Google Scholar] [CrossRef]
- Fan, X.; Zhou, Y.; Jin, X.; Song, R.B.; Li, Z.; Zhang, Q. Carbon material-based anodes in the microbial fuel cells. Carbon Energy 2021, 3, 449–472. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, P.; Gupta, P. Understanding Metabolic Pathways for Enhanced Microbial Electrosynthesis: A Sustainable Approach for Carbon Dioxide Reduction to High–Value Products. Chem. Eng. J. Adv. 2025, 22, 100755. [Google Scholar] [CrossRef]
- Shi, G.; Arata, C.; Tryk, D.A.; Tano, T.; Yamaguchi, M.; Iiyama, A.; Uchida, M.; Iida, K.; Watanabe, S.; Kakinuma, K. NiFe alloy integrated with amorphous/crystalline NiFe oxide as an electrocatalyst for alkaline hydrogen and oxygen evolution reactions. ACS Omega 2023, 8, 13068–13077. [Google Scholar] [CrossRef]
- Yu, L.; Kim, D.-G.; Ai, P.; Yuan, H.; Ma, J.; Zhao, Q.; Chen, S. Effects of metal and metal ion on biomethane productivity during anaerobic digestion of dairy manure. Fermentation 2023, 9, 262. [Google Scholar] [CrossRef]
- Nwanebu, E.; Jezernik, M.; Lawson, C.; Bruant, G.; Tartakovsky, B. Impact of cathodic pH and bioaugmentation on acetate and CH4 production in a microbial electrosynthesis cell. RSC Adv. 2024, 14, 22962–22973. [Google Scholar] [CrossRef]
- Chung, T.H.; Dhillon, S.K.; Shin, C.; Pant, D.; Dhar, B.R. Microbial electrosynthesis technology for CO2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol. Adv. 2024, 77, 108474. [Google Scholar] [CrossRef]
- Vassilev, I.; Hernandez, P.A.; Batlle-Vilanova, P.; Freguia, S.; Krömer, J.O.; Keller, J.; Ledezma, P.; Virdis, B. Microbial Electrosynthesis of Isobutyric, Butyric, Caproic Acids, and Corresponding Alcohols from Carbon Dioxide. Sustain. Chem. Eng. 2018, 6, 8485–8493. [Google Scholar] [CrossRef]
- Jourdin, L.; Winkelhorst, M.; Rawls, B.; Buisman, C.J.N.; Strik, D.P.B.T.B. Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2: Steering with CO2 loading rate and hydraulic retention time. Bioresour. Technol. Rep. 2019, 7, 100284. [Google Scholar] [CrossRef]
- Kung, Y.; Drennan, C.L. A role for nickel–iron cofactors in biological carbon monoxide and carbon dioxide utilization. Curr. Opin. Chem. Biol. 2011, 15, 276–283. [Google Scholar] [CrossRef]
- Biester, A.; Grahame, D.A.; Drennan, C.L. Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2410995121. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, R.; Omanovic, S.; Hrapovic, S.; Nwanebu, E.; Tartakovsky, B. The Effect of Bismuth and Tin on Methane and Acetate Production in a Microbial Electrosynthesis Cell Fed with Carbon Dioxide. Molecules 2024, 29, 462. [Google Scholar] [CrossRef]
- Shahbazi, M.-A.; Faghfouri, L.; Ferreira, M.P.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H.A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321. [Google Scholar] [CrossRef]
- Villaseñor-Cerón, L.; Mendoza-Anaya, D.; López-Ortiz, S.; Rosales-Ibañez, R.; Rodríguez-Martínez, J.; Reyes-Valderrama, M.; Rodríguez-Lugo, V. Biocompatibility analysis and chemical characterization of Mn-doped hydroxyapatite. J. Mater. Sci. Mater. Med. 2023, 34, 40. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, J.; Weiyang, J.; Qiao, B.; Wang, Y.; Li, Y.; Jiang, D. A novel biodegradable Mg-1Zn-0.5 Sn alloy: Mechanical properties, corrosion behavior, biocompatibility, and antibacterial activity. J. Magnes. Alloys 2020, 8, 374–386. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Yi, X.; Yang, F.; Wang, D.; Han, H. Dissimilatory manganese reduction facilitates synergistic cooperation of hydrolysis, acidogenesis, acetogenesis and methanogenesis via promoting microbial interaction during anaerobic digestion of waste activated sludge. Environ. Res. 2023, 218, 114992. [Google Scholar] [CrossRef]
- Vidales, A.G.; Omanovic, S.; Li, H.; Hrapovic, S.; Tartakovsky, B. Evaluation of biocathode materials for microbial electrosynthesis of methane and acetate. Bioelectrochemistry 2022, 148, 108246. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, A.; Kaloyanov, N.; Ruskova, K.; Zahariev, A. Methane Production from Cow Manure in the Presence of Bi (III) Complex of Sulfamic Acid. J. Chem. Technol. Metall. 2024, 59, 633–638. [Google Scholar] [CrossRef]
- Bialek, B.; Diaz-Bone, R.A.; Pieper, D.; Hollmann, M.; Hensel, R. Toxicity of methylated bismuth compounds produced by intestinal microorganisms to Bacteroides thetaiotaomicron, a member of the physiological intestinal microbiota. J. Toxicol. 2011, 2011, 608349. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, K.D.; Buisman, C.J.; Strik, D.P. Branched medium chain fatty acids: Iso-caproate formation from iso-butyrate broadens the product spectrum for microbial chain elongation. Environ. Sci. Technol. 2019, 53, 7704–7713. [Google Scholar] [CrossRef]
- Ahn, J.H.; Jung, K.H.; Lim, E.S.; Kim, S.M.; Han, S.O.; Um, Y. Recent advances in microbial production of medium chain fatty acid from renewable carbon resources: A comprehensive review. Bioresour. Technol. 2023, 381, 129147. [Google Scholar] [CrossRef]
- Zheng, M.; Xu, J.; Xu, X.; Tang, Z.; Hou, Y.; Li, X.; Li, Q.; Li, M.; Wei, D.; Cao, Z. Medium-Chain Fatty Acid Production via Microbial Electrosynthesis: Mechanisms, Progress, and Prospects. Int. J. Electrochem. Sci. 2025, 20, 101091. [Google Scholar] [CrossRef]
- Scarborough, M.J.; Myers, K.S.; Donohue, T.J.; Noguera, D.R. Medium-Chain Fatty Acid Synthesis by “Candidatus Weimeria bifida” gen. nov., sp. nov., and “Candidatus Pseudoramibacter fermentans” sp. nov. Appl. Environ. Microbiol. 2020, 86, e02242-19. [Google Scholar] [CrossRef]
- Remize, M.; Brunel, Y.; Silva, J.L.; Berthon, J.-Y.; Filaire, E. Microalgae n-3 PUFAs production and use in food and feed industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef]
- Shi, K.; Liang, B.; Cheng, H.-Y.; Wang, H.-C.; Liu, W.-Z.; Li, Z.-L.; Han, J.-L.; Gao, S.-H.; Wang, A.-J. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. Water Res. 2024, 258, 121778. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwanebu, E.; Hrapovic, S.; Tanguay-Rioux, F.; Gharbi, R.; Tartakovsky, B. The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell. Methane 2025, 4, 19. https://doi.org/10.3390/methane4030019
Nwanebu E, Hrapovic S, Tanguay-Rioux F, Gharbi R, Tartakovsky B. The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell. Methane. 2025; 4(3):19. https://doi.org/10.3390/methane4030019
Chicago/Turabian StyleNwanebu, Emmanuel, Sabahudin Hrapovic, Fabrice Tanguay-Rioux, Rihab Gharbi, and Boris Tartakovsky. 2025. "The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell" Methane 4, no. 3: 19. https://doi.org/10.3390/methane4030019
APA StyleNwanebu, E., Hrapovic, S., Tanguay-Rioux, F., Gharbi, R., & Tartakovsky, B. (2025). The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell. Methane, 4(3), 19. https://doi.org/10.3390/methane4030019