Long-Term Anaerobic Structured Fixed-Bed Reactor Operation for Domestic Sewage Treatment: Performance and Metal Dynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Results
2.2. Evaluation of the Sludge Specific Methanogenic Activity (SMA)
2.3. Metal Concentrations in the DS
2.4. Metal Loading Rate in the ASTBR Influent and Effluent
2.5. Hydrodynamic Assays
3. Materials and Methods
3.1. Experimental Setup
3.2. Reactor Startup and Operation
3.3. Performance Assessment: Analytical and Statistical Analysis
3.4. Operational Stability Measurements
3.5. Metal Assessment in the ASTBR
3.6. ASTBR Hydrodynamic Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Water Agency. Update of the Database of Sewage Treatment Stations in Brazil. 2020, Brazilia. Available online: https://www.saneamentobasico.com.br/wp-content/uploads/2020/09/encarteatlasesgotos_etes.pdf (accessed on 23 November 2021).
- United Nations: Sustainable Development Goals. 2015. Available online: https://sdgs.un.org/goals (accessed on 17 December 2021).
- Chernicharo, C.A.L. Anaerobic Reactors; IWA Publishing: London, UK, 2017. [Google Scholar]
- Cuel, M.F.; Kwong, W.H.; Zaiat, M.; Foresti, E. Solution of a heterogeneous modeling of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor by the sequencing method. Can. J. Civ. Eng. 2011, 38, 415–421. [Google Scholar] [CrossRef]
- Mockaitis, G.; Pantoja, J.L.R.; Rodrigues, J.A.D.; Foresti, E.; Zaiat, M. Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content. Bioprocess Biosyst. Eng. 2014, 37, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.B.; Mukaeda, C.M.; Sabatini, C.A.; Santos-Neto, Á.J.; Zaiat, M. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. J. Environ. Manag. 2020, 273, 111170. [Google Scholar] [CrossRef] [PubMed]
- Sella, C.F.; Carneiro, R.B.; Sabatini, C.A.; Sakamoto, I.K.; Zaiat, M. Can different inoculum sources influence the biodegradation of sulfamethoxazole antibiotic during anaerobic digestion? Braz. J. Chem. Eng. 2022, 39, 35–46. [Google Scholar] [CrossRef]
- de Aquino, S.; Fuess, L.T.; Pires, E.C. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization. Bioresour. Technol. 2017, 235, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.B.; Sabatini, C.A.; Santos-Neto, Á.J.; Zaiat, M. Feasibility of anaerobic packed and structured-bed reactors for sulfamethoxazole and cipro fl oxacin removal from domestic sewage. Sci. Total Environ. 2019, 678, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Mockaitis, G.; Rodrigues, J.A.D.; Foresti, E.; Zaiat, M. Toxic effects of cadmium (Cd2+) on anaerobic biomass: Kinetic and metabolic implications. J. Environ. Manag. 2012, 106, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Camiloti, P.R.; Mockaitis, G.; Rodrigues, J.A.D.; Damianovic, M.H.R.Z.; Foresti, E.; Zaiat, M. Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. J. Chem. Technol. Biotechnol. 2014, 89, 1044–1050. [Google Scholar] [CrossRef]
- de Araujo, M.M.; Gaudencio, B.O.; Ayabe, D.N.; Zaiat, M. Evaluation of an innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for brewery wastewater treatment. Braz. J. Chem. Eng. 2016, 33, 733–741. [Google Scholar] [CrossRef]
- Blanco, V.M.C.; Fuess, L.T.; Zaiat, M. Calcium dosing for the simultaneous control of biomass retention and the enhancement of fermentative biohydrogen production in an innovative fixed-film bioreactor. Int. J. Hydrogen Energy 2017, 42, 12181–12196. [Google Scholar] [CrossRef]
- Fuess, L.T.; Kiyuna, L.S.M.; Ferraz, A.D.N.; Persinoti, G.F.; Squina, F.M.; Garcia, M.L.; Zaiat, M. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl. Energy 2017, 189, 480–491. [Google Scholar] [CrossRef]
- Borges, A.V.; Fuess, L.T.; Takeda, P.Y.; Alves, I.; Dias, M.E.S.; Damianovic, M.H.R.Z. Co-digestion of biofuel by-products: Enhanced biofilm formation maintains high organic matter removal when methanogenesis fails. J. Environ. Manag. 2022, 310, 114768. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.P.; Fuess, L.T.; Rodriguez, R.P.; Lens, P.N.L.; Zaiat, M. Sulfidogenesis establishment under increasing metal and nutrient concentrations: An effective approach for biotreating sulfate-rich wastewaters using an innovative structured-bed reactor (AnSTBR). Bioresour. Technol. Rep. 2020, 11, 100458. [Google Scholar] [CrossRef]
- Chon, H.S.; Ohandja, D.G.; Voulvoulis, N. Assessing the relative contribution of wastewater treatment plants to levels of metals in receiving waters for catchment management. Water Air Soil Pollut. 2012, 223, 3987–4006. [Google Scholar] [CrossRef]
- Iloms, E.; Ololade, O.O.; Ogola, H.J.O.; Selvarajan, R. Investigating industrial effluent impact on municipal wastewater treatment plant in vaal, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 1096. [Google Scholar] [CrossRef]
- Moussavi, G.; Kazembeigi, F.; Farzadkia, M. Performance of a pilot scale up-flow septic tank for on-site decentralized treatment of residential wastewater. Process Saf. Environ. Prot. 2010, 88, 47–52. [Google Scholar] [CrossRef]
- Pareboom, J.H.F.; Vereijken, T.L.F. Anaerobic Digestion: Sludge Management, Appropriate Technologies; International Association on Water Quality: London, UK, 1994; pp. 9–22. [Google Scholar]
- Ike, M.; Inoue, D.; Miyano, T.; Liu, T.T.; Sei, K.; Soda, S.; Kadoshin, S. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresour. Technol. 2010, 101, 3952–3957. [Google Scholar] [CrossRef]
- Silva, J.A.; Sarti, A.; Maintinguer, S.I.; Mkaiser, I.; Silva, G.H. Performance of an anaerobic baffled reactor with an aerobic chamber treating low-strenght wastewater. Desalin. Water Treat. 2017, 100, 1–10. [Google Scholar] [CrossRef]
- Ripley, L.E.; Boyle, W.C.; Converse, J.C. Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J. Water Pollut. Control Fed. 1986, 58, 406–411. [Google Scholar]
- Foresti, E. Fundamentos do processo de digestão anaeróbia. In III Taller y Seminario Latinoamericano Tratamiento Anaerobio de Aguas Residuales; Montevideo, Uruguay. Anais… Montevideo, Uruguay, October 1994; Universidad de la Republica, Ed.; Universidad de la Republica: Montevideo, Uruguay, 1994; pp. 97–110. [Google Scholar]
- Souza, L.F.C.; Florencio, L.; Gavazza, S.; Kato, M.T. Methanogenic activity inhibition by increasing the linear alkylbenzene sulfonate (LAS) concentration. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2016, 51, 656–660. [Google Scholar] [CrossRef]
- Braga, A.F.M.; Zaiat, M.; Silva, G.H.R.; Fermoso, F.G. Metal fractionation in sludge from sewage UASB treatment. J. Environ. Manag. 2017, 193, 98–107. [Google Scholar] [CrossRef]
- Silva, J.A.; Braga, A.F.M.; Fermoso, F.; Zaiat, M.; Silva, G.H.R. Evaluation of the influence of trace metals on methane production from domestic sewage, using The Plackett-Burman experimental desing. J. Environmetal Manag. 2021, 294, 113002. [Google Scholar] [CrossRef]
- Bachmann, N. Sustainable Biogas Production in Municipal Wastewater Treatment Plants; IEA Bioenergy: Massongex, Switzerland, 2015; Volume 20. [Google Scholar]
- Udaeta, M.E.M.; Guilherme, G.A.; da Silva, V.O.; Galvão, L.C.R. Basic and procedural requirements for energy potential from biogas of sewage treatment plants. J. Environ. Manag. 2019, 236, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Bocio, A.; Trevilato, T.M.B.; Takayanagui, A.M.M.; Domingo, J.L.; Segura-Muñoz, S.I. Heavy metals in untreated/treated urban effluent ans sludge from a biological wastewater treatment plant. Env. Sci. Pollut. Res. 2007, 14, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.C.F.; Canteras, F.B.; Moreira, S. Analyses of heavy metals in sewage and sludge from treatment plants in the cities of Campinas and Jaguariúna, using synchrotron radiation total reflection X-rayfluorescence. Radiat. Phys. Chem. 2014, 95, 342–345. [Google Scholar] [CrossRef]
- Pipi, A.R.F.; Magdalena, A.G.; Giafferis, G.P.; Silva, G.H.R.; Piacenti-Silva, M. Evaluation of metal removal efficiency and its influence in the physicochemical parameters at two sewage treatment plants. Environ. Monit. Assess. 2018, 190, 263. [Google Scholar] [CrossRef]
- Brazil, Ministry of the Environment. Defines Criteria and Procedures for the Production and Application of Biosolids in Soils, and Makes Other Provisions. National Environment Council—CONAMA. Resolution No. 498. 19 August 2020. Available online: https://conama.mma.gov.br/index.php?option=com_sisconama&task=arquivo.download&id=797 (accessed on 15 November 2021).
- Brazil, Ministry of the Environment. Provisions the conditions and standards of effluents and complements and changes Resolution 357 from March 17, 2005 issued by the National Environment Council (CONAMA). National Environment Council—CONAMA. Resolution No. 430. 13 May 2011. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=627 (accessed on 18 November 2021).
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Zitomer, D.H.; Johnson, C.C.; Speece, R.E. Metal Stimulation and Municipal Digester Thermophilic/Mesophilic Activity. J. Environ. Eng. 2008, 134, 42–47. [Google Scholar] [CrossRef]
- Zandvoort, M.H.; van Hullebusch, E.D.; Fermoso, F.G.; Lens, P.N.L. Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies. Eng. Life Sci. 2006, 6, 293–301. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Anzola-Rojas, M.D.P.; Zaiat, M. A novel anaerobic down-flow structured-bed reactor for long-term stable H2 energy production from wastewater. J. Chem. Technol. Biotechnol. 2016, 91, 1551–1561. [Google Scholar] [CrossRef]
- Ahmad, F.; Sakamoto, I.K.; Adorno, M.A.T.; Motteran, F.; Silva, E.L.; Varesche, M.B.A. Methane production from hydrogen peroxide assisted hydrothermal pretreatment of solid fraction sugarcane bagasse. Waste Biomass Valorization 2020, 11, 31–50. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Hussain, A.; Dubey, S.K. Specific methanogenic activity test for anaerobic degradation of influents. Appl. Water Sci. 2017, 7, 535–542. [Google Scholar] [CrossRef]
- Lebrero, R.; Toledo-Cevantes, A.; Muñoz, R.; del Nery, V.; Foresti, E. Biogas upgrading from vinasse digesters: A comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor. J. Chem. Techn. Biotechnol. 2016, 91, 2488–2495. [Google Scholar] [CrossRef]
- Zwietering, M.; Jongenburger, I.; Rombouts, F.M.; van’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Zinatizadeh, A.A.L.; Mohamed, A.R.; Abdullah, A.Z.; Mashitah, M.D.; Hasnain Isa, M.; Najafpour, G.D. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Res. 2006, 40, 3193–3208. [Google Scholar] [CrossRef]
- Chernicharo, C.A.L. Anaerobic Reactors, 2nd ed.; DESA, UFMG: Belo Horizonte, Brazil, 2007. [Google Scholar]
- Dilallo, R.; Albertison, O.E. Volatile Acids by Direct Titration. J. Water Pollut. Control Fed. 1961, 33, 356–365. [Google Scholar]
- World Weather & Climate Information Association. Climate in São Carlos (Sao Paulo State), Brazil, 2018 [WWW Document]. Available online: https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,Sao-Carlos,Brazil (accessed on 15 July 2021).
- Dillner, A.M.; Shafer, M.M.; Schauer, J.J. A Novel Method Using Polyurethane Foam (PUF) Substrates to Determine Trace Element Concentrations in Size-Segregated Atmospheric Particulate Matter on Short Time Scales. Aerosol Sci. Technol. 2007, 41, 75–85. [Google Scholar] [CrossRef]
Metals | Concentrations (mg L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
São Carlos (Present Study) | Ribeirão Preto [30] | Campinas [31] | Jaguariuna [31] | Bauru 1 ** [32] | Bauru 2 *** [32] | ||||
Dry Season | Wet Season | - | Dry Season | Wet Season | Dry Season | Wet Season | - | - | |
Al | 1.14 ± 0.79 | 0.83 ± 0.65 | - | - | - | - | - | 3.503 ± 0.004 | 2.501 ± 0.004 |
Ba | 0.06 ± 0.02 | 0.06 ± 0.03 | - | - | - | - | - | 0.127 ± 0.013 | 0.057 ± 0.013 |
Cd | * nd | * nd | 0.1 ± 0.1 | - | - | - | - | - | - |
Cr | * nd | * nd | 6.8 ± 3.7 | 0.403 ± 0.009 | 0.227 ± 0.009 | 0.427 ± 0.013 | 0.474 ± 0.013 | - | - |
Cu | * nd | * nd | 17.2 ± 4.9 | 0.343 ± 0.005 | 0.510 ± 0.005 | 0.546 ± 0.005 | 0.509 ± 0.005 | 0.052 ± 0.002 | 0.039 ± 0.002 |
Fe | 1.05 ± 0.81 | 0.89 ± 0.49 | - | - | - | - | - | 1.722 ± 0.005 | 1.428 ± 0.005 |
K | 13.35 ± 7.89 | 7.10 ± 3.41 | - | - | - | - | - | - | - |
Mn | 0.09 ± 0.07 | 0.05 ± 0.02 | 52.5 ± 4.0 | - | - | - | - | 0.032 ± 0.004 | 0.041 ± 0.004 |
Mg | 4.11 ± 2.70 | 2.95 ± 1.98 | - | - | - | - | - | - | - |
Ni | * nd | * nd | - | 0.22 ± 0.005 | 0.322 ± 0.005 | 0.104 ± 0.004 | 0.065 ± 0.004 | - | - |
Pb | 0.04 ± 0.03 | 0.05 ± 0.02 | 37.4 ± 59.6 | 0.011 ± 0.001 | 0.013 ± 0.001 | 0.067 ± 0.001 | 0.066 ± 0.001 | - | - |
Zn | 0.09 ± 0.13 | 0.18 ± 0.05 | 79.2 ± 41.0 | 1.468 ± 0.008 | 1.100 ± 0.008 | 1.562 ± 0.010 | 1.554 ± 0.010 | - | - |
Metals | Inoculation Foam (mg gTS−1) | Sewage Sludge (End of Operation) (mg gTS−1) | Brazil Resolution no 498 [33] * (mg gTS−1) | Effluent (mg L−1) | Brazil Resolution no. 430 [34] ** (mg L−1) |
---|---|---|---|---|---|
Al | 36.63 ± 1.81 | 27.63 ± 1.80 | 1.47 ± 1.31 | --- | |
As | n.d. * | n.d. * | 0.041 | n.d. * | 0.5 |
Ba | 1.13 ± 0.122 | 0.88 ± 0.12 | 1.3 | 0.04 ± 0.04 | 5.0 |
Cd | n.d. * | n.d. * | 0.039 | n.d. * | 0.2 |
Co | 0.005 ± 0.002 | 0.002 ± 0.001 | --- | n.d. * | --- |
Cr | 0.06 ± 0.05 | 0.05 ± 0.05 | 1.0 | n.d. * | 1.0 |
Cu | 5.87 ± 0.32 | 4.63 ± 0.12 | 1.5 | n.d. * | --- |
Fe | 49.94 ± 2.0 | 34.42 ± 2.01 | --- | 1.33 ± 1.00 | 15 |
K | 17.36 ± 0.90 | 15.95 ± 0.90 | --- | 7.67 ± 5.76 | --- |
Mg | 9.88 ± 1.91 | 7.51 ± 1.91 | --- | 2.61 ± 2.05 | --- |
Mn | 0.97 ± 0.04 | 0.78 ± 0.02 | --- | 0.05 ± 0.02 | 1.0 |
Ni | 0.09 ± 0.03 | 0.06 ± 0.03 | 0.42 | n.d. * | 2.0 |
Pb | 0.11 ± 0.09 | 0.11 ± 0.09 | 0.3 | 0.01 ± 0.01 | 0.5 |
Se | 0.02 ± 0.04 | 0.02 ± 0.04 | 0.036 | n.d. * | 0.3 |
Zn | 6.22 ± 2.51 | 4.33 ± 2.51 | 2.8 | 0.07 ± 0.03 | 5.0 |
ASTBR COD Concentrations | ||||||
---|---|---|---|---|---|---|
End of Operation | Hydrodynamic Assay for Fe | |||||
Influent (mg L−1) | Effluent (mg L−1) | COD Removal Efficiency (%) | Influent (mg L−1) | Effluent (mg L−1) | COD Removal Efficiency (%) | |
465.0 | 139.5 | 70.0 | 654.5 | 159.5 | 75.6 | |
514.5 | 159.0 | 69.1 | 604.0 | 151.0 | 75.0 | |
582.0 | 178.5 | 69.3 | 633.0 | 135.0 | 78.7 | |
534.5 | 110.5 | 79.3 | 639.5 | 146.0 | 77.2 | |
514.0 | 99.0 | 80.7 | 655.0 | 140.5 | 78.5 | |
506.5 | 176.5 | 75.0 | 663.0 | 132.0 | 80.1 | |
399.5 | 198.5 | 70.0 | 627.0 | 131.0 | 79.1 | |
594.0 | 136.0 | 77.1 | 576.5 | 131.0 | 77.3 | |
592.5 | 145.5 | 75.4 | 542.0 | 118.5 | 78.1 | |
487.0 | 115.5 | 76.3 | 551.0 | 113.0 | 79.5 | |
512.0 | 119.5 | 76.7 | 599.0 | 114.0 | 81.0 | |
606.0 | 187.5 | 69.1 | 634.5 | 116.5 | 81.6 | |
527.0 | 174.0 | 67.0 | 649.0 | 113.5 | 82.5 | |
* | 575.7 ± 58.3 | 149.2 ± 32.3 | 73.46 ± 4.53 | 617.5 ± 40.1 | 130.9 ± 15.4 | 78.5 ± 2.0 |
Phase | Period (Day) | Flow Rate (L h−1) | HRT (h) | Liquid Temperature (°C) | |
---|---|---|---|---|---|
Influent | Effluent | ||||
1 | 123 | 0.43 | 12 | 27 ± 2 | 28 ± 2 |
2 | 179 | 0.65 | 8 | 25 ± 3 | 26 ± 2 |
3 | 155 | 0.86 | 6 | 28 ± 6 | 29 ± 5 |
4 | 157 | 1.04 | 5 | 29 ± 2 | 28 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.A.d.; Braga, A.F.M.; Quartaroli, L.; Fermoso, F.G.; Zaiat, M.; Silva, G.H.R.d. Long-Term Anaerobic Structured Fixed-Bed Reactor Operation for Domestic Sewage Treatment: Performance and Metal Dynamics. Methane 2024, 3, 421-436. https://doi.org/10.3390/methane3030024
Silva JAd, Braga AFM, Quartaroli L, Fermoso FG, Zaiat M, Silva GHRd. Long-Term Anaerobic Structured Fixed-Bed Reactor Operation for Domestic Sewage Treatment: Performance and Metal Dynamics. Methane. 2024; 3(3):421-436. https://doi.org/10.3390/methane3030024
Chicago/Turabian StyleSilva, Julliana Alves da, Adriana F. M. Braga, Larissa Quartaroli, Fernando G. Fermoso, Marcelo Zaiat, and Gustavo H. R. da Silva. 2024. "Long-Term Anaerobic Structured Fixed-Bed Reactor Operation for Domestic Sewage Treatment: Performance and Metal Dynamics" Methane 3, no. 3: 421-436. https://doi.org/10.3390/methane3030024
APA StyleSilva, J. A. d., Braga, A. F. M., Quartaroli, L., Fermoso, F. G., Zaiat, M., & Silva, G. H. R. d. (2024). Long-Term Anaerobic Structured Fixed-Bed Reactor Operation for Domestic Sewage Treatment: Performance and Metal Dynamics. Methane, 3(3), 421-436. https://doi.org/10.3390/methane3030024