Pathways toward Climate-Neutral Red Meat Production †
Abstract
:1. Introduction
2. Methods
2.1. Timeseries of GHG Emissions
2.2. Mitigation and Sequestration Interventions
2.3. Quantifying Radiative Forcing (RF) Footprints
3. Results
3.1. Red Meat Industry RF Footprint
3.2. Sheep Meat Sector RF Footprint
3.3. Beef Cattle Sector RF Footprint
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 4 July 2023).
- Climate Change Widespread, Rapid, and Intensifying—IPCC. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 4 July 2023).
- Archer, D.; Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Chang. 2008, 90, 283–297. [Google Scholar] [CrossRef]
- Eby, M.; Zickfeld, K.; Montenegro, A.; Archer, D.; Meissner, K.J.; Weaver, A.J. Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J. Clim. 2009, 22, 2501–2511. [Google Scholar] [CrossRef]
- Smith, C.; Nicholls, Z.R.J.; Armour, K.; Collins, W.; Forster, P.; Meinshausen, M.; Palmer, M.D.; Watanabe, M. The earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., Eds.; Cambridge University Press: Cambridge, UK, 2023; Available online: https://www.ipcc.ch/ (accessed on 22 May 2023).
- Tanaka, K.; O’Neill, B.C. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets. Nat. Clim. Chang. 2018, 8, 319–324. [Google Scholar] [CrossRef]
- Shine, K.P. The global warming potential—The need for an interdisciplinary retrial. Clim. Chang. 2009, 96, 467–472. [Google Scholar] [CrossRef]
- Allen, M.R.; Fuglestvedt, J.S.; Shine, K.P.; Reisinger, A.; Pierrehumbert, R.T.; Forster, P.M. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Chang. 2016, 6, 773–777. [Google Scholar] [CrossRef]
- Ocko, I.B.; Hamburg, S.P.; Jacob, D.J.; Keith, D.W.; Keohane, N.O.; Oppenheimer, M.; Roy-Mayhew, J.D.; Schrag, D.P.; Pacala, S.W. Unmask temporal trade-offs in climate policy debates. Science 2017, 356, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, K.; Lal, R. Agroforestry systems. In Carbon Sequestration in Agricultural Ecosystems; Springer: Cham, Switzerland, 2018; pp. 235–260. [Google Scholar]
- Lorenz, K.; Lal, R. Carbon sequestration in grassland soils. In Carbon Sequestration in Agricultural Ecosystems; Springer: Cham, Switzerland, 2018; pp. 175–210. [Google Scholar]
- FAO. Methane Emissions in Livestock and Rice Systems—Sources, Quantification, Mitigation and Metrics; Livestock Environmental Assessment and Performance (LEAP) Partnership: Rome, Italy, 2023. [Google Scholar]
- del Prado, A.; Manzano, P.; Pardo, G. The role of the European small ruminant dairy sector in stabilising global temperatures: Lessons from GWP* warming-equivalent emission metrics. J. Dairy Res. 2021, 88, 8–15. [Google Scholar] [CrossRef] [PubMed]
- del Prado, A.; Lynch, J.; Liu, S.; Ridoutt, B.; Pardo, G.; Mitloehner, F. Opportunities and challenges in using GWP* to report the impact of ruminant livestock on global temperature change. Animal 2023, 17, 100790. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B. Climate impact of Australian livestock production assessed using the GWP* climate metric. Livest. Sci. 2021, 246, 104459. [Google Scholar] [CrossRef]
- Pressman, E.M.; Liu, S.; Mitloehner, F.M. Methane emissions from California dairies estimated using novel climate metric Global Warming Potential Star show improved agreement with modeled warming dynamics. Front. Sustain. Food Syst. 2023, 6, 1072805. [Google Scholar] [CrossRef]
- Liu, S.; Proudman, J.; Mitloehner, F.M. Rethinking methane from animal agriculture. CABI Agric. Biosci. 2021, 2, 22. [Google Scholar] [CrossRef]
- Place, S.E.; McCabe, C.J.; Mitloehner, F.M. Symposium review: Defining a pathway to climate neutrality for US dairy cattle production. J. Dairy Sci 2022, 105, 8558–8568. [Google Scholar] [CrossRef] [PubMed]
- Costa, C., Jr.; Wollenberg, E.; Benitez, M.; Newman, R.; Gardner, N.; Bellone, F. Roadmap for achieving net-zero emissions in global food systems by 2050. Sci. Rep. 2022, 12, 15064. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B.; Huang, J. When climate metrics and climate stabilization goals do not align. Environ. Sci. Technol. 2019, 53, 14093–14094. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B. Climate neutral livestock production—A radiative forcing-based climate footprint approach. J. Clean. Prod. 2021, 291, 125260. [Google Scholar] [CrossRef]
- Ridoutt, B.; Lehnert, S.A.; Denman, S.; Charmley, E.; Kinley, R.; Dominik, S. Potential GHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots. J. Clean. Prod. 2022, 337, 130499. [Google Scholar] [CrossRef]
- Allen, M.R.; Shine, K.P.; Fuglestvedt, J.S.; Millar, R.J.; Cain, M.; Frame, D.J.; Macey, A.H. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Clim. Atmos. Sci. 2018, 1, 16. [Google Scholar] [CrossRef]
- Cain, M.; Lynch, J.; Allen, M.R.; Fuglestvedt, J.S.; Frame, D.J.; Macey, A.H. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Clim. Atmos. Sci. 2019, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.R.; Möller, V.; van Diemen, R.; Fuglestvedt, J.; Masson-Delmotte, V.; Méndez, C.; Reisinger, A.; Semenov, S. Annex VII: Glossary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2023; Available online: https://www.ipcc.ch/ (accessed on 22 May 2023).
- Lynch, J.; Cain, M.; Pierrehumbert, R.; Allen, M. Demonstrating GWP*: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 2020, 15, 044023. [Google Scholar] [CrossRef]
- Australian Greenhouse Emissions Information System. Available online: https://ageis.climatechange.gov.au.xxx (accessed on 4 July 2022).
- DISER. National Inventory Report 2020 Volume 1; Australian Government Department of Industry, Science, Energy and Resources: Canberra, Australia, 2022.
- DISER. National Inventory Report 2020 Volume 2; Australian Government Department of Industry, Science, Energy and Resources: Canberra, Australia, 2022.
- Wiedemann, S.G.; Ledgard, S.F.; Henry, B.K.; Yan, M.J.; Mao, N.; Russell, S.J. Application of life cycle assessment to sheep production systems: Investigating co-production of wool and meat using case studies from major global producers. Int. J. Life Cycle Assess. 2015, 20, 463–476. [Google Scholar] [CrossRef]
- Wiedemann, S.; McGahan, E.; Murphy, C.; Yan, M. Resource use and environmental impacts from beef production in eastern Australia investigated using life cycle assessment. Anim. Prod. Sci. 2016, 56, 882–894. [Google Scholar] [CrossRef]
- Wiedemann, S.; Davis, R.; McGahan, E.; Murphy, C.; Redding, M. Resource use and greenhouse gas emissions from grain-finishing beef cattle in seven Australian feedlots: A life cycle assessment. Anim. Prod. Sci. 2017, 57, 1149–1162. [Google Scholar] [CrossRef]
- All Energy. 2020 Environmental Performance Review (EPR) for the Red Meat Processing (RMP) Industry; Australian Meat Processor Corporation and Meat & Livestock Australia: North Sydney, Australia, 2021. [Google Scholar]
- Ridoutt, B. Greenhouse Gas Footprint of the Australian Red Meat Production and Processing Sectors 2020; Meat & Livestock Australia: North Sydney, Australia, 2022. [Google Scholar]
- Hegarty, R.S.; Passetti, R.A.; Dittmer, K.M.; Wang, Y.; Shelton, S.W.; Emmet-Booth, J.; Wollenberg, E.; McAllister, T.; Leahy, S.; Beauchemin, K.; et al. An Evaluation of Emerging Feed Additives to Reduce Methane Emissions from Livestock; A report coordinated by Climate Change, Agriculture and Food Security (CCAFS) and the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) Initiative of the Global Research Alliance (GRA). 2021. Available online: https://globalresearchalliance.org/wp-content/uploads/2021/12/An-evaluation-of-evidence-for-efficacy-and-applicability-of-methane-inhibiting-feed-additives-for-livestock-FINAL (accessed on 22 August 2022).
- Black, J.L.; Davison, T.M.; Box, I. Methane emissions from ruminants in Australia: Mitigation potential and applicability of mitigation strategies. Animals 2021, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.K.; Hegarty, R.S.; Cowie, A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim. Nutr. 2021, 7, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Fouts, J.Q.; Honan, M.C.; Roque, B.M.; Tricarico, J.M.; Kebreab, E. Enteric methane mitigation interventions. Transl. Anim. Sci. 2022, 6, txac041. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Magnusson, M.; Paul, N.A.; de Nys, R.; Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 2014, 9, e85289. [Google Scholar]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; De Anda, V.; Ginsburg, D.W.; Harden, M.C.; Nuzhdin, S.V.; et al. Methane reduction potential of two Pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Kinley, R.D.; de Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282–289. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Carbon Storage. Available online: https://www.mla.com.au/research-and-development/Environment-sustainability/carbon-neutral-2030-rd/carbon-storage/ (accessed on 1 September 2022).
- Industry GHG Emissions Avoidance. Available online: https://www.mla.com.au/research-and-development/Environment-sustainability/carbon-neutral-2030-rd/industry-ghg-emissions-avoidance/ (accessed on 1 September 2022).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Chapter 8 Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- Australia’s Nationally Determined Contribution. Available online: https://unfccc.int/documents/510662 (accessed on 7 July 2023).
- Fuglestvedt, J.; Rogelj, J.; Millar, R.J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P.M.; Kriegler, E.; Shindell, D. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement. Phil. Trans. R. Soc. A 2018, 376, 20160445. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Johansson, D.J.A.; O’Neill, B.C.; Fuglestvedt, J.S. Emission metrics under the 2 °C climate stabilization target. Clim. Chang. 2013, 117, 933–941. [Google Scholar] [CrossRef]
- Allen, M.; Tanaka, K.; Macey, A.; Cain, M.; Jenkins, S.; Lynch, J.; Smith, M. Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environ. Res. Lett. 2021, 16, 074009. [Google Scholar] [CrossRef] [PubMed]
- Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Isabelle, W.; Alexander, P.; Hermann, L.-C. Global food demand scenarios for the twenty first century. PLoS ONE 2015, 10, e0139201. [Google Scholar]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Reducing Methane from Livestock. Available online: https://www.dcceew.gov.au/climate-change/emissions-reduction/agricultural-land-sectors/livestock (accessed on 19 July 2023).
- Snapshot of Australian Agriculture. 2023. Available online: https://www.agriculture.gov.au/abares/products/insights/snapshot-of-australian-agriculture (accessed on 19 July 2023).
- Mayberry, D.; Bartlett, H.; Moss, J.; Davison, T.; Herrero, M. Pathways to carbon-neutrality for the Australian red meat sector. Agric. Syst. 2019, 175, 13–21. [Google Scholar] [CrossRef]
- Smith, M.A.; Cain, M.; Allen, M.R. Further improvement of warming-equivalent emissions calculation. npj Clim. Atmos. Sci. 2021, 4, 19. [Google Scholar] [CrossRef]
- Collins, W.J.; Frame, D.J.; Fuglestvedt, J.S.; Shine, K.P. Stable climate metrics for emissions of short and long-lived species—Combining steps and pulses. Environ. Res. Lett. 2020, 15, 024018. [Google Scholar] [CrossRef]
- Skeie, R.B.; Berntsen, T.K.; Myhre, G.; Tanaka, K.; Kvalevåg, M.M.; Hoyle, C.R. Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys. 2011, 11, 11827–11857. [Google Scholar] [CrossRef]
- Rogelj, J.; Schleussner, C.F. Unintentional unfairness when applying new greenhouse gas emissions metrics at country level. Environ. Res. Lett. 2019, 14, 11403. [Google Scholar] [CrossRef]
- Cain, M.; Shine, K.; Frame, D.; Lynch, J.; Macey, A.; Pierrehumbert, R.; Allen, M. Comment on ‘Unintentional unfairness when applying new greenhouse gas emissions metrics at country level’. Environ. Res. Lett. 2021, 16, 068001. [Google Scholar] [CrossRef]
Year | Goats ‘000 Head | Sheep (Incl. Lambs) ‘000 Head | Cattle (Pasture) ‘000 Head | Cattle (Feedlot) M Head Days | Processing—Beef Cattle ‘000 t HSCW 1 | Processing—Mutton/Lamb ‘000 t HSCW 1 |
---|---|---|---|---|---|---|
2020 | 460 | 66,670 | 21,228 | 356 | 2083 | 658 |
2021 | 460 | 73,545 | 22,512 | 348 | 1872 | 663 |
2022 | 460 | 79,196 | 23,781 | 376 | 1956 | 703 |
2023 | 460 | 82,036 | 24,747 | 388 | 2162 | 746 |
2024 | 460 | 82,616 | 24,888 | 395 | 2295 | 734 |
2025 | 460 | 83,376 | 24,683 | 396 | 2330 | 742 |
2026 | 460 | 81,822 | 24,422 | 397 | 2347 | 748 |
2027 | 460 | 80,333 | 24,144 | 397 | 2361 | 755 |
2028 | 460 | 78,842 | 23,884 | 398 | 2377 | 762 |
2029 | 460 | 78,654 | 23,840 | 399 | 2392 | 768 |
2030 | 460 | 78,529 | 23,905 | 401 | 2420 | 774 |
Intervention | Sector | Efficacy | Adoption (Initial) | Adoption (2030) | Notes |
---|---|---|---|---|---|
High-impact feed additives | Feedlot | 49% | 2023—5% | 80% | Includes Bovaer® (3-NOP) and macroalgae-derived additives. Efficacy refers to enteric methane reduction. Potential productivity impacts, but likely small and uncertain. |
High-impact feed additives | Grazing | 11% | 2026—2% | 30% | Methane yield reduction less for animals on forage diets and administration likely to be sub-optimal (15–30% of efficacy in feedlots). |
Other feed additives | Feedlot | 10% | 2023—2% | 10% | Includes tannin extracts, saponins, grape marc, etc. Methane yield reduction typically <15%. Potential impact on feed digestibility and growth, but likely small. |
Other feed additives | Beef cattle (grazing) | 5% | 0% | 0% | Due to low efficacy, it is not envisaged that these products will be widely adopted in grazing systems before 2030. |
Other feed additives | Sheep (grazing) | 1% | 2023—2% | 10% | Grape marc might have limited potential for supplemental feeding of sheep in southern Australia located in proximity to wineries (0.10 × 10% of year). |
Leucaena forage crop | Beef cattle (grazing) | 2% | 2023—2% | 20% | Methane yield reduction is generally less than 15%, applicable to 20% of Australian beef cattle herd (0.10 × 20%). |
Desmanthus forage crop | Beef cattle (grazing) | 4% | 2023—2% | 20% | Methane yield reduction is generally less than 15%, applicable to 40% of Australian beef cattle herd (0.10 × 40%). |
Breeding for lower methane | Grazing | 0.25%/y | 2023—1% | 3% | Estimated reduction of 4–8% achievable over 20 years, may be constrained by impacts on productivity traits (5%/20 years). Adoption may be low due to testing costs. |
Trees on farm | Grazing | 25 MT/y | 2023—5% | 100% | Integration of shade and shelterbelts on 10 M ha (southern Aust focus) of available 355 million ha of grazing area nationally, storing more than 25MT CO2 per annum. |
Soil carbon storage | Beef cattle (grazing) | 7.8 MT/y | 2023—5% | 100% | Soil carbon storage increased via a variety of means, including planting of leguminous forage crops, fertilization of pastures, and the transition of cropland to permanent pasture. Soil carbon storage levels in 30% of grazing lands increased by 50–100 kg CO2/ha/year (520 M ha × 30% × 50 kg/ha/yr). |
Savannah burning management | Beef cattle (grazing) | 10.7 MT/y | 2023—5% | 100% | More than 40 million ha of cattle grazing land can adopt savannah burning mgmt. 0.044 t CO2e/ha/y from avoided CH4 and N2O emissions due to less intense burning. 0.22 t/CO2e/ha/y from additional carbon sequestration in woody biomass. |
Herd management | Beef cattle (grazing) | 15% | 2023—5% | 80% | Activities including the culling of unproductive animals, supplementary feeding, and improved grazing management. Variable, but 15% reduction in methane feasible. Adoption high due to productivity co-benefits |
Flock management | Sheep (grazing) | 10% | 2023—5% | 50% | Variable, but 10% reduction in methane feasible. Realistic productivity co-benefits. |
Intervention | % |
---|---|
Trees on farm | 29.6 |
Improved herd management | 23.7 |
Savannah burning management | 15.6 |
Soil carbon storage | 11.4 |
Feed additives—beef cattle pasture | 7.4 |
Feed additives—beef cattle feedlot | 5.3 |
Improved flock management | 2.6 |
Forage crops | 2.3 |
Feed additives—sheep pasture | 2.0 |
Breeding for lower methane | 0.1 |
Intervention | % |
---|---|
Trees on farm | 71.2 |
Improved flock management | 16.3 |
Feed additives—sheep pasture | 12.3 |
Breeding for lower methane | 0.2 |
Intervention | % |
---|---|
Improved herd management | 28.2 |
Trees on farm | 21.7 |
Savannah burning management | 18.5 |
Soil carbon storage | 13.5 |
Feed additives—beef cattle pasture | 8.8 |
Feed additives—beef cattle feedlot | 6.4 |
Forage crops | 2.8 |
Breeding for lower methane | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridoutt, B. Pathways toward Climate-Neutral Red Meat Production. Methane 2024, 3, 397-409. https://doi.org/10.3390/methane3030022
Ridoutt B. Pathways toward Climate-Neutral Red Meat Production. Methane. 2024; 3(3):397-409. https://doi.org/10.3390/methane3030022
Chicago/Turabian StyleRidoutt, Bradley. 2024. "Pathways toward Climate-Neutral Red Meat Production" Methane 3, no. 3: 397-409. https://doi.org/10.3390/methane3030022
APA StyleRidoutt, B. (2024). Pathways toward Climate-Neutral Red Meat Production. Methane, 3(3), 397-409. https://doi.org/10.3390/methane3030022