Spatial-Economic Potential Analysis of Wind Power Plants in Germany
Abstract
:1. Introduction
2. Background and Literature Review
3. Data and Methodology
3.1. LCOE Calculation
3.2. Statistical Evaluation
3.3. Spatial Analysis
4. Results and Discussion
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, S.L.; Ngadi, N.; Amaran Tuan Abdullah, T.; Inuwa, I.M. Recent advances of feed-in tariff in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 42–52. [Google Scholar] [CrossRef]
- AG-Energiebilanzen. Erneuerbare Energien in Deutschland—Daten zur Entwicklung im Jahr 2019; Umweltbundesamt: Dessau-Roßlau, Germany, 2020.
- Fraunhofer IEE. Windenergieausbau Stagniert. 2. July 2019. Available online: https://www.iee.fraunhofer.de/de/presse-infothek/Presse-Medien/Pressemitteilungen/2019/windenergie-ausbau-stagniert.html (accessed on 28 January 2021).
- FA Wind. Ausbausituation der Windenergie an Land im Frühjahr 2020; Fachagentur Windenergie an Land: Berlin, Germany, 2020. [Google Scholar]
- Croonenbroeck, C.; Hennecke, D. Does the German renewable energy act provide a fair incentive system for onshore wind power? A simulation analysis. Energy Policy 2020, 144, 111663. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Lütkehus, I.; Salecker, H.; Adlunger, K. Potential der Windenergie an Land; Umweltbundesamt: Dessau-Roßlau, Germany, 2013.
- Feng, J.; Feng, L.; Wang, J.; King, C.W. Evaluation of the onshore wind energy potential in mainland China—Based on GIS modeling and EROI analysis. Resour. Conserv. Recycl. 2020, 152, 104484. [Google Scholar] [CrossRef]
- Tran, T.; Smith, A. Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Appl. Energy 2018, 216, 157–171. [Google Scholar] [CrossRef]
- de Andres, A.; Medina-Lopez, E.; Crooks, D.; Roberts, O.; Jeffrey, H. On the reversed LCOE calculation: Design constraints for wave energy commercialization. Int. J. Mar. Energy 2017, 18, 88–108. [Google Scholar] [CrossRef]
- Australian Energy Regulator. Wholesale Electricity Market Performance Report 2018; Australian Energy Regulator: Melbourne, Australia, 2018.
- Shen, W.; Chen, X.; Qiu, J.; Hayward, J.A.; Sayeef, S.; Osman, P.; Meng, K.; Dong, Z.Y. A comprehensive review of variable renewable energy levelized cost of electricity. Renew. Sustain. Energy Rev. 2020, 133, 110301. [Google Scholar] [CrossRef]
- Short, W.; Packey, D.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; National Technical Information Sewice (NTIS): Springfield, IL, USA, 1995.
- Ouyang, X.; Lin, B. Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China. Energy Policy 2014, 70, 64–73. [Google Scholar] [CrossRef]
- Bruck, M.; Sandborn, P.; Goudarzi, N. A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs). Renew. Energy 2018, 122, 131–139. [Google Scholar] [CrossRef]
- Rhodes, J.D.; King, C.; Gulen, G.; Olmstead, S.M.; Dyer, J.S.; Hebner, R.E.; Beach, F.C.; Edgar, T.F.; Webber, M.E. A geographically resolved method to estimate levelized power plant costs with environmental externalities. Energy Policy 2017, 102, 491–499. [Google Scholar] [CrossRef]
- Vazquez, A.; Iglesias, G. Capital costs in tidal stream energy projects—A spatial approach. Energy 2016, 107, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.; Zhou, A.; Shen, B.; Hughes, K. Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: A GIS- and lifecycle cost-based assessment of Western China’s options. Energy Policy 2007, 35, 4391–4401. [Google Scholar] [CrossRef]
- Simpson, J.; Loth, E.; Dykes, K. Cost of valued energy for design of renewable energy systems. Renew. Energy 2020, 153, 290–300. [Google Scholar] [CrossRef]
- DWD Climate Data Center (CDC). 200 m × 200 m Rasterdaten der mittleren jährlichen Windgeschwindigkeiten in 10 m bis 100 m Höhe (in 10 m Stufen) und Weibullparameter für Deutschland (Version V0.1); Deutscher Wetterdienst: Offenbach, Germany, 2014. [Google Scholar]
- Deutsche Windguard. Kostensituation der Windenergie an Land in Deutschland—Update. Varel: Bundesverband WindEnergie e.V.; VDMA Power Systems: Varel, Germany, 2015. [Google Scholar]
- Deutsche Windguard. Kostensituation der Windenergie an Land in Deutschland. Varel: Bundesverband WindEnergie e.V.; VDMA Power Systems: Varel, Germany, 2013. [Google Scholar]
- EnergieAgentur.NRW. Das Fundament von Windenergieanlagen: Was passiert beim Rückbau? 2018. Available online: https://www.energieagentur.nrw/blogs/erneuerbare/beitraege/das-fundament-von-windenergieanlagen-was-passiert-beim-rueckbau/ (accessed on 28 January 2021).
- EIKE—Europäisches Institut für Klima & Energie. Teure Hinterlassenschaften—Die Rückbaukosten von Windrädern. 2019. Available online: https://www.eike-klima-energie.eu/2019/04/18/teure-hinterlassenschaften-die-rueckbaukosten-von-windraedern/ (accessed on 28 January 2021).
- Herbert-Acero, J.F. A review of methodological approaches for the design and optimization of wind farms. Energies 2014, 7, 6930–7016. [Google Scholar] [CrossRef]
- Statista. Wind Onshore—EEG-Vergütung bis 2021. 2020. Available online: https://de.statista.com/statistik/daten/studie/173266/umfrage/durchschnittliche-eeg-verguetung-von-wind-onshore-bis-2015/ (accessed on 28 January 2021).
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Aslan, S.T.A.; Gundogdu, K.S.; Arici, I. Some metric indices for the assessment of land consolidated projects. Pak. J. Biol. Sci. 2007, 10, 1390–1397. [Google Scholar] [PubMed]
- Walz, U. Landschaftsstrukturmaße und Indikatorensysteme zur Erfassung und Bewertung des Landschaftswandels und Seiner Umweltauswirkungen—Unter Besonderer Berücksichtigung der Biologischen Vielfalt; University of Rostock: Rostock, Germany, 2013. [Google Scholar] [CrossRef]
- Deutsche Windguard. Status des Windenergieausbaus an Land in Deutschland. Varel: Bundesverband WindEnergie e.V.; VDMA Power Systems: Varel, Germany, 2019. [Google Scholar]
- Deutsche Windguard. Status des Windenergieausbaus an Land in Deutschland. Varel: Bundesverband WindEnergie e.V.; VDMA Power Systems: Varel, Germany, 2020. [Google Scholar]
Hub Height (HH) | 2 to 3 MW | 3 to 4 MW |
---|---|---|
Less than 100 m | 980 € | 990 € |
100 to 120 m | 1160 € | 1120 € |
120 to 140 m | 1280 € | 1180 € |
More than 140 m | 1380 € | 1230 € |
State | Min | Mean | Max | Median | SD | Skewness | Kurtosis | M |
---|---|---|---|---|---|---|---|---|
Baden-Wuerttemberg | 0.0481 | 0.0833 | 2.0233 | 0.0761 | 0.0398 | 7.7112 | 151.2408 | 892,435 |
Bavaria | 0.0475 | 0.0775 | 0.7664 | 0.0758 | 0.0275 | 8.949 | 180.8449 | 1,760,482 |
Berlin | 0.0541 | 0.0868 | 0.208 | 0.0812 | 0.0331 | 2.6511 | 9.8326 | 22,349 |
Brandenburg | 0.0541 | 0.0663 | 0.2471 | 0.0578 | 0.0138 | 1.4902 | 7.4002 | 742,211 |
Bremen | 0.0517 | 0.0617 | 0.0814 | 0.0607 | 0.0071 | 0.859 | 3.0493 | 10,518 |
Hamburg | 0.0499 | 0.0653 | 0.1099 | 0.0631 | 0.0104 | 0.6249 | 2.3215 | 18,827 |
Hesse | 0.0499 | 0.0702 | 0.9466 | 0.0607 | 0.02 | 5.2926 | 134.2796 | 527,947 |
Mecklenburg-Western Pomerania | 0.0499 | 0.0611 | 0.1218 | 0.0631 | 0.0059 | 1.2735 | 5.0887 | 581,538 |
Lower Saxony | 0.0493 | 0.0618 | 0.2471 | 0.0578 | 0.009 | 2.5168 | 18.8112 | 1,193,176 |
North Rhine-Westphalia | 0.0531 | 0.0625 | 0.7664 | 0.056 | 0.0153 | 17.8221 | 723.2602 | 851,400 |
Rhineland-Palatinate | 0.0536 | 0.0682 | 0.2471 | 0.0607 | 0.0183 | 2.0389 | 7.9481 | 496,157 |
Saarland | 0.0541 | 0.0689 | 0.1781 | 0.0607 | 0.0156 | 1.3041 | 5.1145 | 64,012 |
Saxony | 0.0478 | 0.0657 | 0.7664 | 0.0578 | 0.0193 | 8.666 | 194.8548 | 460,352 |
Saxony-Anhalt | 0.0471 | 0.0661 | 1.5322 | 0.0559 | 0.0263 | 14.6607 | 396.9082 | 514,291 |
Schleswig-Holstein | 0.0475 | 0.0612 | 0.1099 | 0.0631 | 0.0047 | −0.0813 | 6.3198 | 395,301 |
Thuringia | 0.0536 | 0.0678 | 0.6306 | 0.0578 | 0.0197 | 5.0664 | 88.9488 | 405,311 |
State | Number of Patches | Perimeter (km) | Area (km²) | Shape Index |
---|---|---|---|---|
Baden-Wuerttemberg | 3524 | 31,114 | 9216 | 81.03 |
Bavaria | 5944 | 52,635 | 17,103 | 100.62 |
Berlin | 42 | 309 | 110 | 7.35 |
Brandenburg | 451 | 12,920 | 14,895 | 26.47 |
Bremen | 19 | 362 | 182 | 6.7 |
Hamburg | 36 | 570 | 327 | 7.88 |
Hesse | 1728 | 25,594 | 9089 | 67.11 |
Lower Saxony | 722 | 24,126 | 24,278 | 38.71 |
Mecklenburg-Western Pomerania | 504 | 13,538 | 10,260 | 33.41 |
North Rhine-Westphalia | 1375 | 32,300 | 21,125 | 55.56 |
Rhineland-Palatinate | 1175 | 28,073 | 9445 | 72.21 |
Saarland | 171 | 2612 | 1107 | 19.62 |
Saxony | 502 | 14,696 | 10,362 | 36.09 |
Saxony-Anhalt | 415 | 10,348 | 12,596 | 23.05 |
Schleswig-Holstein | 392 | 7289 | 4882 | 26.08 |
Thuringia | 1293 | 19,139 | 8218 | 52.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennecke, D.; Croonenbroeck, C. Spatial-Economic Potential Analysis of Wind Power Plants in Germany. Wind 2021, 1, 77-89. https://doi.org/10.3390/wind1010005
Hennecke D, Croonenbroeck C. Spatial-Economic Potential Analysis of Wind Power Plants in Germany. Wind. 2021; 1(1):77-89. https://doi.org/10.3390/wind1010005
Chicago/Turabian StyleHennecke, David, and Carsten Croonenbroeck. 2021. "Spatial-Economic Potential Analysis of Wind Power Plants in Germany" Wind 1, no. 1: 77-89. https://doi.org/10.3390/wind1010005