From AI to the Table: A Systematic Review of ChatGPT’s Potential and Performance in Meal Planning and Dietary Recommendations
Abstract
:1. Introduction
2. Methods
2.1. Study Selection Protocols
2.2. Search Strategy
2.3. Data Extraction
2.4. Study Quality Assessment
3. Results
3.1. Study Selection
3.2. Basic Characteristics of Included Studies
3.3. ChatGPT Effectiveness on Diet Plan
3.4. Study Quality
4. Discussion
4.1. Limitations
4.2. Broader Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Search Prompt
- PubMed
- 2.
- Web of Science
- 3.
- EBSCO
- 4.
- Embase
References
- Acharya, P.C.; Alba, R.; Krisanapan, P.; Acharya, C.M.; Suppadungsuk, S.; Csongradi, E.; Mao, M.A.; Craici, I.M.; Miao, J.; Thongprayoon, C.; et al. AI-Driven Patient Education in Chronic Kidney Disease: Evaluating Chatbot Responses against Clinical Guidelines. Diseases 2024, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Agne, I.; Gedrich, K. Personalized dietary recommendations for obese individuals—A comparison of ChatGPT and the Food4Me algorithm. Clin. Nutr. Open Sci. 2024, 56, 192–201. [Google Scholar] [CrossRef]
- Aiumtrakul, N.; Thongprayoon, C.; Arayangkool, C.; Vo, K.B.; Wannaphut, C.; Suppadungsuk, S.; Krisanapan, P.; Garcia Valencia, O.A.; Qureshi, F.; Miao, J.; et al. Personalized Medicine in Urolithiasis: AI Chatbot-Assisted Dietary Management of Oxalate for Kidney Stone Prevention. J. Pers. Med. 2024, 14, 107. [Google Scholar] [CrossRef]
- Alawida, M.; Mejri, S.; Mehmood, A.; Chikhaoui, B.; Isaac Abiodun, O. A Comprehensive Study of ChatGPT: Advancements, Limitations, and Ethical Considerations in Natural Language Processing and Cybersecurity. Information 2023, 14, 462. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozturkcan, A. AI showdown: Info accuracy on protein quality content in foods from ChatGPT 3.5, ChatGPT 4, bard AI and bing chat. Br. Food J. 2024, 126, 3335–3346. [Google Scholar] [CrossRef]
- Chatelan, A.; Clerc, A.; Fonta, P.-A. ChatGPT and Future Artificial Intelligence Chatbots: What may be the Influence on Credentialed Nutrition and Dietetics Practitioners? J. Acad. Nutr. Diet. 2023, 123, 1530–1531. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Alkagiet, S.; Tsigkriki, L.; Kleitsioti, P.; Sidiropoulos, G.; Efstratiou, D.; Askalidi, T.; Tsaousidis, A.; Siarkos, M.; Giannakopoulou, P.; et al. ChatGPT and Patients with Heart Failure. Angiology 2024, 00033197241238403. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Krauss, R.M.; Taubes, G.; Willett, W. Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance. BMJ 2018, 361, k2139. [Google Scholar] [CrossRef]
- Garcia, M.B. ChatGPT as a Virtual Dietitian: Exploring Its Potential as a Tool for Improving Nutrition Knowledge. Appl. Syst. Innov. 2023, 6, 96. [Google Scholar] [CrossRef]
- Go, V.L.W.; Wong, D.A.; Butrum, R. Diet, Nutrition and Cancer Prevention: Where Are We Going from Here? J. Nutr. 2001, 131, 3121S–3126S. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. In NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2020. [Google Scholar]
- Haman, M.; Školník, M.; Lošťák, M. AI dietician: Unveiling the accuracy of ChatGPT’s nutritional estimations. Nutrition 2024, 119, 112325. [Google Scholar] [CrossRef]
- Hieronimus, B.; Hammann, S.; Podszun, M.C. Can the AI tools ChatGPT and Bard generate energy, macro- and micro-nutrient sufficient meal plans for different dietary patterns? Nutr. Res. 2024, 128, 105–114. [Google Scholar] [CrossRef]
- Kim, D.W.; Park, J.S.; Sharma, K.; Velazquez, A.; Li, L.; Ostrominski, J.W.; Tran, T.; Seitter Peréz, R.H.; Shin, J.-H. Qualitative evaluation of artificial intelligence-generated weight management diet plans. Front. Nutr. 2024, 11, 1374834. [Google Scholar] [CrossRef]
- Kiriakedis, S.; Duty, B.; Chase, T.; Wusirika, R.; Metzler, I. Using ChatGPT-4 to Analyze 24-Hour Urine Results and Generate Custom Dietary Recommendations for Nephrolithiasis. J. Endourol. 2024, 38, 719–724. [Google Scholar] [CrossRef]
- Kirk, D.; van Eijnatten, E.; Camps, G. Comparison of Answers between ChatGPT and Human Dieticians to Common Nutrition Questions. J. Nutr. Metab. 2023, 2023, 5548684. [Google Scholar] [CrossRef]
- Leslie-Miller, C.J.; Simon, S.L.; Dean, K.; Mokhallati, N.; Cushing, C.C. The critical need for expert oversight of ChatGPT: Prompt engineering for safeguarding child healthcare information. J. Pediatr. Psychol. 2024, 49, 812–817. [Google Scholar] [CrossRef]
- Liao, L.-L.; Chang, L.-C.; Lai, I.-J. Assessing the Quality of ChatGPT’s Dietary Advice for College Students from Dietitians’ Perspectives. Nutrients 2024, 16, 1939. [Google Scholar] [CrossRef]
- Lo, F.P.-W.; Qiu, J.; Wang, Z.; Chen, J.; Xiao, B.; Yuan, W.; Giannarou, S.; Frost, G.; Lo, B. Dietary Assessment with Multimodal ChatGPT: A Systematic Analysis. IEEE J. Biomed. Health Inform. 2024, 28, 7577–7587. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. Sweeteners and Risk of Obesity and Type 2 Diabetes: The Role of Sugar-Sweetened Beverages. Curr. Diabetes Rep. 2012, 12, 195–203. [Google Scholar] [CrossRef]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Taktouk, M.; Matbouli, D.; Khaleel, S.; Maher, A.; Uzun, B.; Alameddine, M.; Nasreddine, L. Artificial intelligence chatbots for the nutrition management of diabetes and the metabolic syndrome. Eur. J. Clin. Nutr. 2024, 78, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, H.A.; Delungahawatta, T.; Atarere, J.O.; Bandaru, S.K.; Barrow, J.B.; Mattar, M.C. Evaluation of online chat-based artificial intelligence responses about inflammatory bowel disease and diet. Eur. J. Gastroenterol. Hepatol. 2024, 36, 1109. [Google Scholar] [CrossRef] [PubMed]
- Niszczota, P.; Rybicka, I. The credibility of dietary advice formulated by ChatGPT: Robo-diets for people with food allergies. Nutrition 2023, 112, 112076. [Google Scholar] [CrossRef] [PubMed]
- Ohlhorst, S.D.; Russell, R.; Bier, D.; Klurfeld, D.M.; Li, Z.; Mein, J.R.; Milner, J.; Ross, A.C.; Stover, P.; Konopka, E. Nutrition research to affect food and a healthy lifespan. Adv. Nutr. 2013, 4, 579–584. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Papastratis, I.; Konstantinidis, D.; Daras, P.; Dimitropoulos, K. AI nutrition recommendation using a deep generative model and ChatGPT. Sci. Rep. 2024, 14, 14620. [Google Scholar] [CrossRef]
- Papastratis, I.; Stergioulas, A.; Konstantinidis, D.; Daras, P.; Dimitropoulos, K. Can ChatGPT Provid. Appropr. Meal Plans NCD Patients? Nutrition 2024, 121, 112291. [Google Scholar] [CrossRef]
- Picazo-Sanchez, P.; Ortiz-Martin, L. Analysing the impact of ChatGPT in research. Appl. Intell. 2024, 54, 4172–4188. [Google Scholar] [CrossRef]
- Ponzo, V.; Goitre, I.; Favaro, E.; Merlo, F.D.; Mancino, M.V.; Riso, S.; Bo, S. Is ChatGPT an Effective Tool for Providing Dietary Advice? Nutrients 2024, 16, 469. [Google Scholar] [CrossRef]
- Qarajeh, A.; Tangpanithandee, S.; Thongprayoon, C.; Suppadungsuk, S.; Krisanapan, P.; Aiumtrakul, N.; Garcia Valencia, O.A.; Miao, J.; Qureshi, F.; Cheungpasitporn, W. AI-Powered Renal Diet Support: Performance of ChatGPT, Bard AI, and Bing Chat. Clin. Pract. 2023, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Athar, M.T.; Islam, M. Type 2 Diabetes, Obesity, and Cancer Share Some Common and Critical Pathways. Front. Oncol. 2021, 10, 600824. [Google Scholar] [CrossRef] [PubMed]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Singar, S.; Nagpal, R.; Arjmandi, B.H.; Akhavan, N.S. Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients 2024, 16, 2673. [Google Scholar] [CrossRef]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, K.; Lan, W.; Gu, Q.; Jiang, G.; Yang, X.; Qin, W.; Han, D. An AI Dietitian for Type 2 Diabetes Mellitus Management Based on Large Language and Image Recognition Models: Preclinical Concept Validation Study. J. Med. Internet Res. 2023, 25, e51300. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Kadire, S.; Sreeramdas, T.; VanOrmer, M.; Thoene, M.; Hanson, C.; Berry, A.; Khazanchi, D. Generating Personalized Pregnancy Nutrition Recommendations with GPT-Powered AI Chatbot. In Proceedings of the 20th International Conference on Information Systems for Crisis Response and Management (ISCRAM), Omaha, NE, USA, 28–31 May 2023; pp. 263–271. [Google Scholar]
- Verma, M.; Hontecillas, R.; Tubau-Juni, N.; Abedi, V.; Bassaganya-Riera, J. Challenges in Personalized Nutrition and Health. Front. Nutr. 2018, 5, 117. [Google Scholar] [CrossRef]
- Wang, L.-C.; Zhang, H.; Ginsberg, N.; Nandorine Ban, A.; Kooman, J.P.; Kotanko, P. Application of ChatGPT to Support Nutritional Recommendations for Dialysis Patients—A Qualitative and Quantitative Evaluation. J. Ren. Nutr. 2024, 34, 477–481. [Google Scholar] [CrossRef]
- Wong, D.K.-K.; Cheung, M.-K. Online Health Information Seeking and eHealth Literacy Among Patients Attending a Primary Care Clinic in Hong Kong: A Cross-Sectional Survey. J. Med. Internet Res. 2019, 21, e10831. [Google Scholar] [CrossRef]
- Wu, S.; Cohen, D.; Shi, Y.; Pearson, M.; Sturm, R. Economic Analysis of Physical Activity Interventions. Am. J. Prev. Med. 2011, 40, 149–158. [Google Scholar] [CrossRef]
- Zhu, H.; An, R. Impact of home-delivered meal programs on diet and nutrition among older adults: A review. Nutr. Health 2013, 22, 89–103. [Google Scholar] [CrossRef]
Study ID | First Author, Year | Region | Diet Suggestion Category | ChatGPT Model/Version Used | Customize/Fine-tuned? | Health Condition Focused? |
---|---|---|---|---|---|---|
18 | Wang, 2024 | USA | Dietary Management, Nutritional Recommendation | GPT-4 | No | Dialysis |
19 | Ponzo, 2024 | Italy | Dietary Management | GPT-3.5 | No | 1. Dyslipidemia (hypercholesterolemia and hypertriglyceridemia) 2. Arterial hypertension 3. Type 2 diabetes mellitus (T2DM) 4. Obesity 5. Non-alcoholic fatty liver disease (NAFLD) 6. Chronic kidney disease (CKD) 7. Sarcopenia |
20 | Tsai, 2023 | USA | Dietary Management | GPT-3.5 | Customized APP | Pregnancy |
21 | Sun, 2023 | China | Dietary Management | ChatGPT, GPT 4.0 | No | T2DM |
22 | Qarajeh, 2023 | USA, Jordan, Thailand | Nutrition Estimation | GPT-4, GPT-3.5 | No | Chronic Kidney Disease (CKD) |
23 | Papastratis, 2024 | Greece | Dietary Management | GPT-4, GPT-3.5 | No | 1. Obesity 2. Cardiovascular disease 3. T2DM |
24 | Papastratis, 2024 | Greece | Dietary Management | GPT-4 | No | No |
25 | Niszczota, 2023 | Poland | Dietary Management | GPT-3 | No | Allergies |
26 | Naqvi, 2024 | USA | Dietary Management | GPT-3.5 | No | Inflammatory Bowel Disease (IBD) |
27 | Naja, 2024 | UAB, Lebanon, Bahrain | Dietary Management, Nutrition Estimation | GPT-3 | No | 1. T2DM 2. MetS 3. Hyperglycemia 4. Obesity 5. HTN 6. High TG 7. Low HDL Levels |
28 | Liao, 2024 | Taiwan | Dietary Management | GPT-3.5 | No | No |
29 | Leslie-Miller, 2024 | USA | Dietary Management | N/A | No | Pediatric |
30 | Kirk, 2023 | Netherlands | Dietary Management | GPT-3 | No | No |
31 | Kiriakedis, 2024 | USA | Dietary Management | GPT-4 | No | Nephrolithiasis |
32 | Kim, 2024 | USA, South Korea | Dietary Management | GPT-4 | No | Multiple Health Conditions |
33 | Lo, 2024 | UK, Hong Kong | Dietary Management, Nutrition Estimation | GPT-4v | No | NO |
34 | Hieronimus, 2024 | Germany | Nutrition Recommendation | GPT-4 | No | No |
35 | Haman, 2023 | Czech | Nutritional Recommendation | GPT-3.5 | No | No |
36 | Bayram, 2024 | Turkey | Nutritional Recommendation | GPT-4, GPT-3.5 | No | No |
37 | Aiumtrakul, 2024 | USA, Thailand | Diet Management | GPT-4, GPT-3.5 | No | Kidney Stone |
38 | Agne, 2024 | Germany | Dietary Management, Nutritional Recommendation | GPT-3.5 | No | Obesity |
39 | Acharya, 2024 | USA, Thailand, Hungry | Dietary Management, Nutritional Recommendation | GPT-4, GPT-3.5 | No | Chronic Kidney Disease (CKD) |
40 | Dimitriadis, 2024 | Greece, Poland | Dietary Management | N/A | No | Heart Failure (HF) |
Category | Study ID | First Author, Year | Key Results | Limitations |
---|---|---|---|---|
Validation Study | 18 | Wang, 2024 | Renal dietitian rated ChatGPT generated meal plan as 5, and nutritional as 2 per 5-point Likert scale (low 1, high 5). | N/A |
19 | Ponzo, 2024 | Overall accuracy of ChatGPT’s advice ranged from 55.5% (sarcopenia) to 73.3% (NAFLD). | Not performed on the most recent versions of ChatGPT. | |
20 | Tsai, 2023 | A ChatGPT-powered chatbot was introduced. | N/A | |
21 | Sun, 2023 | 1. ChatGPT: 60.5% accuracy on dietitian exam. 2. GPT-4.0: 74.5% accuracy on the dietitian exam. 3. Ketogenic diet adherence: 80.7% (non-recommended foods), 94.87% (recommended foods). | 1. Incomplete exposure to patient questions. 2. Variability in response. 3. Scope definition unclear. | |
24 | Papastratis, 2024 | 1. Energy intake deviation: 17%. 2. Macronutrient accuracy improves by 12%. 3. Overall accuracy: 84.19%. | N/A | |
25 | Niszczota, 2023 | 1. 52/56 ChatGPT-generated diets include allergens. 2. Frequent errors in food quantity specification. | More dynamic interactions with ChatGPT. | |
26 | Naqvi, 2024 | Appropriate response rate: 83.3%. Inter-rater reliability: 94.4%. | GPT’s limitations in data interpretation. | |
27 | Naja, 2024 | 1. Incomplete/discordant dietary management recommendations. 2. Lacks complete PES statements in nutrition care. 3. Diet plan: display micronutrients and macronutrients discrepancies. | 1. Same prompt vary response. 2. Differences bring by prompt quality. 3. Lack of human comparison group. | |
28 | Liao, 2024 | 1. 84.38% accuracy rate Nutrition Literacy (NL) test. 2. Feedback: ‘Lacks thoroughness/rigor,’ cited 52 times among 30 dietitians’ 242 entries. | 1. Restrictive scenarios may not represent all dietary challenges. 2. Potential bias introduced by misunderstood dietitians. 3. Small sample size. | |
31 | Kiriakedis, 2024 | ChatGPT aligns dietary recommendations with clinical guidelines. | ChatGPT’s recommendations may not account for the personalized situation of patients. | |
32 | Kim, 2024 | 1. 5/14 experts successfully distinguish AI from human content. 2. 79.1% (53/67) of experts unable to distinguish AI-generated diet plans, rated similarly to controls. 3. The AI-generated diet plan was rated above neutral in all evaluation variables. | The AI diet plan has several limitations: 1. Conflicts about dietary considerations. 2. Insufficient details about recommendations. 3. Lack of affordability. | |
33 | Lo, 2024 | 1. 87.5% accuracy in food detection. 2. Limited performance in portion size estimations. 3. Nutritional contents conversion is well-aligned with the USDA National Nutrient Database. 4. Able to identify regional dishes. | 1. Portion Size estimation for small size. 2. Limited performance in portion estimation. | |
34 | Hieronimus, 2024 | 1. ChatGPT-generated meal plan mostly met the nutrient requirement of macronutrients and micronutrients. | 1. Individual user prompts may influence the result. 2. Quick evolving on GPT models suggests the result is only valid for study time. | |
35 | Haman, 2023 | 97% of values fall within the 40% difference in USDA data. | 1. Restricted to basic nutrition of a single item. 2. Accuracy variable across different nutrients. 3. Unable to assess ChatGPT Plan for chronic conditions patients. | |
36 | Bayram, 2024 | GPT 4 achieved 60.6% accuracy for the food classification task. | 1. Limited in experimental environment. 2. Accuracy discrepancies exist between different models. 3. Only focused on PQ classification. | |
37 | Aiumtrakul, 2024 | 1. Accuracy: GPT-4 (52%), GPT-3.5(49%). 2. Accuracy decreases with higher oxalate content categories. | 1. Enhancement in the chatbot algorithm is needed for better clinical applicability. 2. The study only focuses on oxalate content. | |
39 | Acharya, 2024 | 1. Both GPT-3.5 and GPT-4 provide no misleading response to all questions of KDOQI and KDIGO guideline questions. 2. Flesch-Kincaid Grade Level readability assessment: ChatGPT 3.5 (11.3 ± 2.1), ChatGPT 4.0 (11.1 ± 1.9). | 1. Evaluation criteria materials may not represent the entirety and complexity of CKD patients. 2. Absent of need for further assessment based on real-world inquiries. | |
40 | Dimitriadis, 2024 | ChatGPT provided thorough and accurate answers for 7/8 questions. | 1.The study does not involve real patients. 2. Only assess HF and accuracy performance. | |
Comparative Study | 22 | Qarajeh, 2023 | 1. GPT-4: 81% accuracy, GPT-3.5: 66% (Mayo Clinic Renal Diet, 240 items). 2. Potassium: GPT-4 (81%), GPT-3.5 (66%). 3. Phosphorus: GPT-4 (77%), GPT-3.5 (85%). | 1. Lack of real-world food diversity. 2. Model discrepancies remain unexplored. 3. Lack of consideration for CKD. 4. Leaving potential concerns such as user experience, usability, and AI integration with clinical workflow. |
23 | Papastratis, 2024 | 1. Nutrient accuracy: GPT-3.5 (82%), GPT-4 (82%), KB Recommender (91%). 2. Energy intake accuracy (caloric difference): ChatGPT (>19%), KB Recommender (0.8%). 3. Meal variety score: GPT-3.5 (6.58), GPT-4 (6.4), KB Recommender (4.89). | N/A | |
29 | Leslie-Miller, 2024 | No difference was observed between ChatGPT and Expert. | 1. Self-report bias 2. Restricted populations 3. Lack of long-term impact measuring | |
30 | Kirk, 2023 | ChatGPT receives higher overall grades than dietitians on five occasions. | The limit of response length may limit response quality. | |
38 | Agne, 2024 | 1. ChatGPT provides suitable personalized dietary advice compared with another algorithm. 2. ChatGPT recommendations contain inconsistencies. 3. ChatGPT should not be solely relied upon. | 1. Inconsistencies and errors in diet management and recommendations 2. ChatGPT response ack of depth and reliability. 3. Further development and fine-tuning of LLM models are necessary to fit dietary recommendations needs. |
Item | Criterion of Study Quality | Percentage Met Criteria/Mean |
---|---|---|
1 | Clear research objectives and goals directly related to ChatGPT. | 91% |
2 | Detailed description of the sample. | 83% |
3 | Specification of the ChatGPT model version used. | 87% |
4 | Valid outcome measures. | 91% |
5 | Comparison with an appropriate benchmark. | 65% |
6 | Involvement of experts as references to evaluate AI outputs. | 78% |
7 | Detailed description of study methods to ensure transparency in data collection. | 91% |
8 | Transparent discussion of study limitations and consideration of real-world applicability. | 78% |
9 | Total study quality score by summing up items 1–8. | 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Liu, G.; Xiang, X.; An, R. From AI to the Table: A Systematic Review of ChatGPT’s Potential and Performance in Meal Planning and Dietary Recommendations. Dietetics 2025, 4, 7. https://doi.org/10.3390/dietetics4010007
Guo P, Liu G, Xiang X, An R. From AI to the Table: A Systematic Review of ChatGPT’s Potential and Performance in Meal Planning and Dietary Recommendations. Dietetics. 2025; 4(1):7. https://doi.org/10.3390/dietetics4010007
Chicago/Turabian StyleGuo, Peiqi, Guancheng Liu, Xiaoling Xiang, and Ruopeng An. 2025. "From AI to the Table: A Systematic Review of ChatGPT’s Potential and Performance in Meal Planning and Dietary Recommendations" Dietetics 4, no. 1: 7. https://doi.org/10.3390/dietetics4010007
APA StyleGuo, P., Liu, G., Xiang, X., & An, R. (2025). From AI to the Table: A Systematic Review of ChatGPT’s Potential and Performance in Meal Planning and Dietary Recommendations. Dietetics, 4(1), 7. https://doi.org/10.3390/dietetics4010007