New Compound Combining an Integrase-Targeting Aptamer and a Small Interfering RNA Targeting the Trans-Activation Response/Poly A Region of HIV-1 Potently Suppresses HIV-1 Replication †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apsi510 Synthesis
2.2. Production of Virus and Antiviral Assays
3. Results
3.1. Production of Apsi510
3.2. Activity of siRNA510, Ap(T30695) and Apsi510 against HIV-1
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moranguinho, I.; Valente, S.T. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020, 12, 1443. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.; Miesen, P.; van Rij, R.P. Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019, 11, 448. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 11–21. [Google Scholar] [CrossRef]
- Chen, M.J.; Gatignol, A.; Scarborough, R.J. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin. Drug Discov. 2023, 18, 163–179. [Google Scholar] [CrossRef]
- Naito, Y.; Nohtomi, K.; Onogi, T.; Uenishi, R.; Ui-Tei, K.; Saigo, K.; Takebe, Y. Optimal design and validation of antiviral siRNA for targeting HIV-1. Retrovirology 2007, 4, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, B.; Yu, B.; Zhong, W.; Lu, Y.; Zhang, J.; Liao, J.; Liu, J.; Pu, Y.; Qiu, L.; et al. Advances in the development of aptamer drug conjugates for targeted drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotech. 2017, 9, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Seo, J.M.; Shin, K.J.; Yang, S.G. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater. Res. 2021, 25, 42. [Google Scholar] [CrossRef] [PubMed]
- Rozina, A.; Anisenko, A.; Kikhai, T.; Silkina, M.; Gottikh, M. Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int. J. Mol. Sci. 2022, 23, 12341. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Burnett, J.C.; Rossi, J.J. Aptamer-siRNA chimeras for HIV. Adv. Exp. Med. Biol. 2015, 848, 211–234. [Google Scholar] [PubMed]
- Zhou, J.; Neff, C.P.; Liu, X.; Zhang, J.; Li, H.; Smith, D.D.; Swiderski, P.; Aboellail, T.; Huang, Y.; Du, Q.; et al. Systemic Administration of Combinatorial dsiRNAs via Nanoparticles Efficiently Suppresses HIV-1 Infection in Humanized Mice. Mol. Ther. 2011, 19, 2228–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.T.; Harwig, A.; Berkhout, B. The HIV-1 Tat protein has a versatile role in activating viral transcription. J. Virol. 2011, 85, 9506–9516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, N.; Hogan, M.E. Structure-Activity of Tetrad-forming Oligonucleotides as a Potent Anti-HIV Therapeutic Drug. J. Biol. Chem. 1998, 273, 34992–34999. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, H.; Li, S.; Zaia, J.; Rossi, J.J. Novel Dual Inhibitory Function Aptamer–siRNA Delivery System for HIV-1 Therapy. Mol. Ther. 2008, 16, 1481–1489. [Google Scholar] [CrossRef]
- Duclair, S.; Gautam, A.; Ellington, A.; Prasad, V.R. High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. Mol. Ther.-Nucleic Acids 2015, 4, e228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moranguinho, I.; Borrego, P.; Lavrado, J.; Moreira, R.; Taveira, N. New Compound Combining an Integrase-Targeting Aptamer and a Small Interfering RNA Targeting the Trans-Activation Response/Poly A Region of HIV-1 Potently Suppresses HIV-1 Replication. Med. Sci. Forum 2023, 22, 23. https://doi.org/10.3390/msf2023022023
Moranguinho I, Borrego P, Lavrado J, Moreira R, Taveira N. New Compound Combining an Integrase-Targeting Aptamer and a Small Interfering RNA Targeting the Trans-Activation Response/Poly A Region of HIV-1 Potently Suppresses HIV-1 Replication. Medical Sciences Forum. 2023; 22(1):23. https://doi.org/10.3390/msf2023022023
Chicago/Turabian StyleMoranguinho, Inês, Pedro Borrego, João Lavrado, Rui Moreira, and Nuno Taveira. 2023. "New Compound Combining an Integrase-Targeting Aptamer and a Small Interfering RNA Targeting the Trans-Activation Response/Poly A Region of HIV-1 Potently Suppresses HIV-1 Replication" Medical Sciences Forum 22, no. 1: 23. https://doi.org/10.3390/msf2023022023
APA StyleMoranguinho, I., Borrego, P., Lavrado, J., Moreira, R., & Taveira, N. (2023). New Compound Combining an Integrase-Targeting Aptamer and a Small Interfering RNA Targeting the Trans-Activation Response/Poly A Region of HIV-1 Potently Suppresses HIV-1 Replication. Medical Sciences Forum, 22(1), 23. https://doi.org/10.3390/msf2023022023