Anti-Bacterial Perspective of Non-Antibiotic Drugs †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Research
2.2. Conducting the Investigation
2.3. Selection Criteria
2.4. Exposition of Findings and Synthesis of Information
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loureiro, R.J.; Roque, F.; Rodrigues, A.T.; Herdeiro, M.T.; Ramalheira, E. O uso de antibióticos e as resistências bacterianas: Breves notas sobre a sua evolução. Rev. Port. Sau. Pub. 2020, 34, 77–84. [Google Scholar] [CrossRef]
- Leoncio, J.M.; de Almeida, V.F.; Ferrari, R.A.P.; Capobiango, J.D.; Kerbauy, G.; Tacla, M.T.G.M. Impacto das infecções relacionadas à assistência à saúde nos custos da hospitalização de crianças. Rev. Esc. Enferm. USP 2019, 53, e03486. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.R.; Hota, B.; Ahmad, I.; Scott, R.D.; Foster, S.D.; Abbasi, F.; Schabowski, S.; Kampe, L.M.; Ciavarella, G.G.; Supino, M.; et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: Implications for antibiotic stewardship. Clin. Infect Dis. 2009, 49, 1175–1184. [Google Scholar] [CrossRef]
- Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today 2011, 16, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.R.; Schultz, P.G.; et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl. Acad. Sci. USA 2015, 112, 4453–4458. [Google Scholar] [CrossRef] [PubMed]
- Caldara, M.; Marmiroli, N. Antimicrobial Properties of Antidepressants and Antipsychotics—Possibilities and Implications. Pharmaceuticals 2021, 14, 915. [Google Scholar] [CrossRef] [PubMed]
- Bellido, J.L.M.; Munoz-Criado, S.; Garcìa-Rodrìguez, J. Antimicrobial activity of psychotropic drugs: Selective serotonin reuptake inhibitors. Int. J. Antimicrob. Agents 2000, 14, 177–180. [Google Scholar] [CrossRef]
- Krzyżek, P.; Franiczek, R.; Krzyżanowska, B.; Łaczmański, Ł.; Migdał, P.; Gościniak, G. In vitro activity of sertraline, an antidepressant, against antibiotic-susceptible and antibiotic-resistant Helicobacter pylori strains. Pathogens 2019, 8, 228. [Google Scholar] [CrossRef]
- Ramón-García, S.; Ng, C.; Anderson, H.; Chao, J.D.; Zheng, X.; Pfeifer, T.; Av-Gay, Y.; Roberge, M.; Thompson, C.J. Synergistic Drug Combinations for Tuberculosis Therapy Identified by a Novel High-Throughput Screen. Antimicrob. Agents Chemother. 2011, 55, 3861–3869. [Google Scholar] [CrossRef]
- Coelho, S.S.; da Rosa, T.F.; Rampelotto, R.F.; Serafin, M.B.; Bottega, A.; Foletto, V.S.; Machado, C.S.; Hörner, R. Amlodipine Repositioning: Scientific Studies and Synergistic Effects. Am. J. Ther. 2019, 28, e772–e776. [Google Scholar] [CrossRef]
- Yimer, E.M.; Mohammed, O.A.; Mohammedseid, S.I. Pharmacological Exploitation of Non-Steroidal Anti-inflammatory Drugs as Potential Sources of Novel Antibacterial Agents. Anti-Infective Agents 2019, 17, 81–92. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, M.; Bahia, M.S.; Silakari, O. Synthesis, cytotoxic study and docking based multidrug resistance modulator potential analysis of 2-(9-oxoacridin-10(9H)-yl)-N-phenyl acetamides. Eur. J. Med. Chem. 2014, 80, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Pan, C.Z.; Zhao, Z.W.; Zhao, Z.X.; Chen, H.L.; Lu, W.B. Effects of a combination of amlodipine and imipenem on 42 clinical isolates of Acinetobacter baumannii obtained from a teaching hospital in Guangzhou, China. BMC Infect. Dis. 2013, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, K.; Kumar, K.A.; Dutta, N. Potential role of the cardiovascular non-antibiotic (helper compound) amlodipine in the treatment of microbial infections: Scope and hope for the future. Int. J. Antimicrob. Agents 2010, 36, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Li, Y.; Zhao, Z.; Wei, S.; Zhao, Z.; Chen, H.; Wu, P. In vitro synergistic effect of amlodipine and imipenem on the expression of the AdeABC efflux pump in multidrug-resistant Acinetobacter baumannii. PLoS ONE 2018, 13, e0198061. [Google Scholar] [CrossRef] [PubMed]
- Elkhatib, W.F.; Haynes, V.L.; Noreddin, A.M. Microbiological appraisal of levofloxacin activity against Pseudomonas aeruginosa biofilm in combination with different calcium chanel blockers in vitro. J. Chemother. 2009, 21, 135–143. [Google Scholar] [CrossRef]
- Coelho, S.S. Reposicionamento E Avaliação Da Atividade Antibacteriana E De Clivagem Do Dna Plasmidial In Vitro Dos Não-Antibióticos Anlodipino E Valsartana. Master’s Dissertation, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2019. [Google Scholar]
- de Sousa, A.K.; Rocha, J.E.; de Souza, T.G.; de Freitas, T.S.; Ribeiro-Filho, J.; Coutinho, H.D.M. New roles of fluoxetine in pharmacology: Antibacterial effect and modulation of antibiotic activity. Microb. Pathog. 2018, 123, 368–371. [Google Scholar] [CrossRef]
- Hadera, M.; Mehari, S.; Basha, N.S.; Amha, N.D.; Berhane, Y. Study on Antimicrobial Potential of Selected Non-antibiotics and its Interaction with Conventional Antibiotics. Pharm. Biosci. J. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Amaral, L.; Martins, A.; Molnar, J.; E Kristiansen, J.; Martins, M.; Viveiros, M.; Rodrigues, L.; Spengler, G.; Couto, I.; Ramos, J.; et al. Phenothiazines, bacterial efflux pumps and targeting the macrophage for enhanced killing of intracellular XDRTB. In Vivo 2010, 24, 409–424. [Google Scholar]
- Neto, J.B.D.A.; Josino, M.A.A.; Silva, C.; Campos, R.D.S.; Nascimento, F.B.S.A.D.; Sampaio, L.S.; Sa, L.V.; Carneiro, I.D.S.; Barroso, F.D.D.; da Silva, L.J.; et al. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb. Pathog. 2019, 127, 335–340. [Google Scholar] [CrossRef]
- Bonde, M.; Højland, D.H.; Kolmos, H.J.; Kallipolitis, B.H.; Klitgaard, J.K. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 2011, 318, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Crowle, A.J.; Douvas, G.S.; May, M.H. Chlorpromazine: A Drug Potentially Useful for Treating Mycobacterial Infections. Chemotherapy 1992, 38, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Ordway, D.; Viveiros, M.; Leandro, C.; Amaral, L.; Arroz, M.J.; Molnar, J.; Kristiansen, J.E. Chlorpromazine has intracellular killing activity against phagocytosed Staphylococcus aureus at clinical concentrations. J. Infect. Chemother. 2002, 8, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.M.; Britton, W.J. Life and death in the granuloma: Immunopathology of tuberculosis. Immunol. Cell Biol. 2007, 85, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Ramos-Alves, M.C.; Soares, A.C. Dos distúrbios psiquiátricos à antibioticoterapia: Reposicionamento da clorpromazina como agente antibacteriano. Rev. Colomb. Cienc. Quím. Farm. 2019, 48, 5–28. [Google Scholar] [CrossRef]
- Ahmed, E.F.; Abd El-Baky, R.M.; Ahmed, A.F.; Fawzy, N.G.; Aziz, N.A.; Gad, G.F.M. Evaluation of antibacterial activity of some non-steroidal anti-inflammatory drugs against bacteria causing urinary tract infection. Afr. J. Microbiol. 2017, 10, 1408–1416. [Google Scholar]
- Zimmermann, P.; Curtis, N. Antimicrobial Effects of Antipyretics. Antimicrob. Agents Chemother. 2017, 61, e02268-16. [Google Scholar] [CrossRef]
- Obad, J.; Suskovic, J.; Kos, B. Antimicrobial activity of ibuprofen: New perspectives on an “old” non-antibiotic drug. Eur. J. Pharm. Sci. 2015, 71, 93–98. [Google Scholar] [CrossRef]
- Wang, W.H.; Wong, W.M.; Dailidiene, D.; E Berg, D.; Gu, Q.; Lai, K.C.; Lam, S.K.; Wong, B.C.Y. Aspirin inhibits the growth of Helicobacter pylori and enhances its susceptibility to antimicrobial agents. Gut 2003, 52, 490–495. [Google Scholar] [CrossRef]
- Kang, G.; Balasubramanian, K.A.; Koshi, A.R.; Mathan, M.M.; Mathan, V.I. Salicylate inhibits fimbriae mediated HEp-2 cell adherence of and haemagglutination by enteroaggregative Escherichia coli. FEMS Microbiol. Lett. 1998, 166, 257–265. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, Y.; Whittell, L.R.; Jergic, S.; Liu, M.; Harry, E.; Dixon, N.E.; Kelso, M.J.; Beck, J.L.; Oakley, A.J. DNA Replication Is the Target for the Antibacterial Effects of Nonsteroidal Anti-Inflammatory Drugs. Chem. Biol. 2014, 21, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Pina-Vaz, C.; Sansonetty, F.; Rodrigues, A.G.; Martinez-De-Oliveira, J.; Fonseca, A.F.; Mårdh, P.-A. Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J. Med Microbiol. 2000, 49, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Geng, J.; Hu, H.; Ma, H.; Gao, X.; Ren, H. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors. PLoS ONE 2017, 12, e0179236. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strains | Minimum Inhibitory Concentration (µg/mL−1) |
---|---|
Staphylococcus aureus | 64–256 |
Acinetobacter baumannii | 64–256 |
Escherichia coli | 128 |
Klebsiella pneumoniae | 128 |
Salmonella typhimurium | 64 |
Bacillus cereus | 128 |
Drugs | Bacterial Strains | Concentrations That Showed Antibiotic Effect (µg/mL) |
---|---|---|
Fluoxetine | Staphylococcus aureus, Escherichia coli, P. aeruginosa | 40–4000 |
Thioridazine | Methicillin-resistant S. aureus strains | 128 |
Chlorpromazine | Mycobacterium tuberculosis | 0.23–3.6 |
Bromperidol | Mycobacterium smegmatis, M. tuberculosis | 50–60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, H.M.D.e.S.; Brandão, L.B.S.; de Melo, T.R.; Ferreira, S.B. Anti-Bacterial Perspective of Non-Antibiotic Drugs. Med. Sci. Forum 2022, 12, 22. https://doi.org/10.3390/eca2022-12701
Almeida HMDeS, Brandão LBS, de Melo TR, Ferreira SB. Anti-Bacterial Perspective of Non-Antibiotic Drugs. Medical Sciences Forum. 2022; 12(1):22. https://doi.org/10.3390/eca2022-12701
Chicago/Turabian StyleAlmeida, Hélida Maravilha Dantas e Sousa, Lara Bianca Soares Brandão, Thamara Rodrigues de Melo, and Sávio Benvindo Ferreira. 2022. "Anti-Bacterial Perspective of Non-Antibiotic Drugs" Medical Sciences Forum 12, no. 1: 22. https://doi.org/10.3390/eca2022-12701
APA StyleAlmeida, H. M. D. e. S., Brandão, L. B. S., de Melo, T. R., & Ferreira, S. B. (2022). Anti-Bacterial Perspective of Non-Antibiotic Drugs. Medical Sciences Forum, 12(1), 22. https://doi.org/10.3390/eca2022-12701