Novel Concepts of Nuclear Physics in a Neutron Star Environment †
Abstract
:1. Introduction
2. Novel Method of Constructing a Universal Equation of State
2.1. The Equation of State and the RMF Lagrangian
2.2. Analysis Results
3. Novel Concept: Hyper-Heavy Nuclei Inside Neutron Stars
Simulations Inside Neutron Star Environment and Analysis Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veselský, M.; Petousis, V.; Leja, J.; Navarro, L. Universal Nuclear Equation of State Introducing the Hypothetical X17 Boson. Symmetry 2022, 15, 49. [Google Scholar] [CrossRef]
- Veselský, M.; Petousis, V.; Moustakidis, C.; Souliotis, G.; Bonasera, A. Investigating the possible existence of hyper-heavy nuclei in a neutron-star environment. Phys. Rev. C Lett. 2022, 106, L012802. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gácsi, Z.; Gulyás, J.; Hunyadi, M.; Kuti, I.; Nyakó, B.M.; Stuhl, L.; Timár, J.; et al. Observation of Anomalous Internal Pair Creation in 8Be: A Possible Indication of a Light, Neutral Boson. Phys. Rev. Lett. 2016, 116, 042501. [Google Scholar] [CrossRef] [PubMed]
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Hunyadi, M.; Ketel, T.J.; Krasznahorkay, A.; Kuti, I.; Nagy, A.; Nyakó, B.M.; et al. New experimental results for the 17 MeV particle created in 8Be. EPJ Web Conf. 2017, 137, 08010. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gulyás, J.; Koszta, M.; Szihalmi, B.; Timár, J.; Firak, D.S.; Nagy, Á.; Sas, N.J.; et al. A new anomaly observed in 4He supporting the existence of the hypothetical X17 particle. J. Phys. Conf. Ser. 2020, 1643, 012001. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J.; Krasznahorkay, A.; Begala, M.; Csatló, M.; Csige, L.; Gulyás, J.; Krakó, A.; Timár, J.; Rajta, I.; Vajda, I.; et al. New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson. arXiv 2022, arXiv:2209.10795. [Google Scholar]
- Sorlin, O. (Slide 10) at ISOLDE User Workshop. 2022. Available online: https://indico.cern.ch/event/1183259/contributions/5110792/attachments/2558044/4409033/LISE-hightlights-sorlin-final.pdf (accessed on 30 January 2023).
- Serot, B.D.; Walecka, J.D. Recent Progress in Quantum Hadrodynamics. Int. J. Mod. Phys. E 1997, 6, 515. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.; Benesch, J.F.; et al. (PREX Collaboration). Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the Equation of State of Dense Matter. Science 2002, 298, 1592. [Google Scholar] [CrossRef] [PubMed]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef]
- Romani, R.W.; Kandel, D.; Filippenko, A.V.; Brink, T.G.; Zheng, W. PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star. Astrophys. J. Lett. 2022, 934, L18. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett. 2020, 896, L44. [Google Scholar] [CrossRef]
- Meisel, Z.; Deibel, A.; Keek, L.; Shternin, P.; Elfritz, J. Nuclear Physics of the Outer Layers of Accreting Neutron Stars. J. Phys. G 2018, 45, 093001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petousis, V.; Veselský, M.; Leja, J.; Moustakidis, C.C.; Souliotis, G.A.; Bonasera, A.; Navarro, L. Novel Concepts of Nuclear Physics in a Neutron Star Environment. Phys. Sci. Forum 2023, 7, 42. https://doi.org/10.3390/ECU2023-14051
Petousis V, Veselský M, Leja J, Moustakidis CC, Souliotis GA, Bonasera A, Navarro L. Novel Concepts of Nuclear Physics in a Neutron Star Environment. Physical Sciences Forum. 2023; 7(1):42. https://doi.org/10.3390/ECU2023-14051
Chicago/Turabian StylePetousis, Vlasios, Martin Veselský, Jozef Leja, Ch. C. Moustakidis, G. A. Souliotis, A. Bonasera, and Laura Navarro. 2023. "Novel Concepts of Nuclear Physics in a Neutron Star Environment" Physical Sciences Forum 7, no. 1: 42. https://doi.org/10.3390/ECU2023-14051