Gravitational Spin Hall Effect in Curves Spacetimes †
Abstract
:1. Introduction
2. WKB Formulation
3. Propagation Equation up to the Subleading Order
4. Polarization Equation up to the Subleading Order
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geometric Optics Approximation
Appendix B. Self-Dual and Anti-Self-Dual Fields
References
- Peres, A.; Terno, D.R. Quantum information and relativity theory. Rev. Mod. Phys. 2004, 76, 93. [Google Scholar] [CrossRef]
- Rideout, D.; Jennewein, T.; Amelino-Camelia, G.; Demarie, T.F.; Higgins, B.L.; Kempf, A.; Kent, A.; Laflamme, R.; Ma, X.; Mann, R.B. Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities. Class. Quantum Gravity 2012, 29, 224011. [Google Scholar] [CrossRef]
- Dahal, P.K.; Terno, D.R. Light rays in the Solar system experiments: Phases and displacements. arXiv 2023, arXiv:2111.03849. [Google Scholar] [CrossRef]
- Skrotskiĭ, G.V. The Influence of Gravitation on the Propagation of Light. Sov. Phys. Dokl. 1957, 2, 226. [Google Scholar]
- Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960, 118, 1396. [Google Scholar] [CrossRef]
- Nouri-Zonoz, M. Gravitoelectromagnetic approach to the gravitational Faraday rotation in stationary spacetimes. Phys. Rev. D 1999, 60, 024013. [Google Scholar] [CrossRef]
- Sereno, M. Gravitational Faraday rotation in a weak gravitational field. Phys. Rev. D 2004, 69, 087501. [Google Scholar] [CrossRef]
- Kopeikin, S.M.; Mashhoon, B. Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies. Phys. Rev. D 2002, 65, 064025. [Google Scholar] [CrossRef]
- Kronberg, P.P.; Dyer, C.C.; Burbidge, E.M. Theoretical modeling of weakly lensed polarized radio sources. Astrophys. J. 2004, 613, 672. [Google Scholar]
- Stark, R.F.; Connors, P.A. Observational test for the existence of a rotating black hole in CYG X-1. Nature 1977, 266, 429. [Google Scholar] [CrossRef]
- Fayos, F.; Llosa, J. Gravitational effects on the polarization plane. Gen. Relativ. Gravit. 1982, 14, 865. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Alsing, P.M.; Stephenson, G.J., Jr. The Wigner rotation for photons in an arbitrary gravitational field. arXiv 2009, arXiv:0902.1399. [Google Scholar]
- Rivera-Tapia, M.; Delgao, A.; Rubilar, G. Weak gravitational field effects on large-scale optical interferometric Bell tests. Class. Quantum Gravity 2020, 37, 195001. [Google Scholar] [CrossRef]
- Takahashi, R. Arrival time differences between gravitational waves and electromagnetic signals due to gravitational lensing. Astrophys. J. 2017, 835, 103. [Google Scholar] [CrossRef]
- Bérard, A.; Mohrbach, H. Spin Hall effect and Berry phase of spinning particles. Phys. Lett. A 2006, 352, 190. [Google Scholar] [CrossRef]
- Dolan, S.R. Higher-order geometrical optics for electromagnetic waves on a curved spacetime. arXiv 2018, arXiv:1801.02273. [Google Scholar]
- Duval, C.; Schucker, T. Gravitational birefringence of light in Robertson-Walker cosmologies. Phys. Rev. D 2017, 96, 043517. [Google Scholar] [CrossRef]
- Frolov, V.P.; Shoom, A.A. Spinoptics in a stationary spacetime. Phys. Rev. D 2011, 84, 044026. [Google Scholar] [CrossRef]
- Gosselin, P.; Bérard, A.; Mohrbach, H. Spin Hall effect of photons in a static gravitational field. Phys. Rev. D 2007, 75, 084035. [Google Scholar] [CrossRef]
- Saturnini, P. Un Modèle de Particule à Spin de Masse Nulle dans le Champ de Gravitation. Ph.D. Thesis, Université de Provence, Marseille, France, 1976. [Google Scholar]
- Souriau, J.M. Modele de particule a spin dans le champ électromagnétique et gravitationnel. Ann. Inst. Henri Poincar A 1974, 20, 315. [Google Scholar]
- Yoo, C.-M. Notes on spinoptics in a stationary spacetime. Phys. Rev. D 2012, 86, 084005. [Google Scholar] [CrossRef]
- Frolov, V.P. Maxwell equations in a curved spacetime: Spin optics approximation. Phys. Rev. D 2020, 102, 084013. [Google Scholar] [CrossRef]
- Oancea, M.A.; Joudioux, J.; Dodin, I.Y.; Ruiz, D.E.; Paganini, C.F.; Andersson, L. Gravitational spin Hall effect of light. Phys. Rev. D 2020, 102, 024075. [Google Scholar] [CrossRef]
- Dahal, P.K. Covariant formulation of spin optics for electromagnetic waves. Appl. Phys. B 2023, 129, 11. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Co.: San Francisco, CA, USA, 1973. [Google Scholar]
- Goldstein, H.; Poole, C.; Safko, J. Classical Mechanics, 3rd ed.; Addison-Wesley: San Francisco, CA, USA, 2002. [Google Scholar]
- Berry, M.V. Interpreting the anholonomy of coiled light. Nature 1987, 326, 277. [Google Scholar] [CrossRef]
- Zel’dovich, B.Y.; Kundikova, N.D. Intrafibre rotation of the plane of polarisation. Quantum Electron. 1995, 25, 172. [Google Scholar] [CrossRef]
- Vinitskiĭ, S.I.; Derbov, V.L.; Dubovik, V.M.; Dubovik, V.M.; Markovski, B.L.; Stepanovskiĭ, Y.P. Topological phases in quantum mechanics and polarization optics. Sov. Phys. Uspekhi 1990, 33, 403. [Google Scholar] [CrossRef]
- Ziman, J.M. Principles of the Theory of Solids; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Duval, C.; Horváth, Z.; Horváthy, P.A. Fermat principle for spinning light. Phys. Rev. D 2006, 74, 021701. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Coriolis Effect in Optics: Unified Geometric Phase and Spin-Hall Effect. Phys. Rev. Lett. 2008, 101, 030404. [Google Scholar] [CrossRef]
- Spohn, H. Semiclassical limit of the Dirac equation and spin precession. Ann. Phys. 2000, 282, 420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahal, P.K. Gravitational Spin Hall Effect in Curves Spacetimes. Phys. Sci. Forum 2023, 7, 40. https://doi.org/10.3390/ECU2023-14050
Dahal PK. Gravitational Spin Hall Effect in Curves Spacetimes. Physical Sciences Forum. 2023; 7(1):40. https://doi.org/10.3390/ECU2023-14050
Chicago/Turabian StyleDahal, Pravin Kumar. 2023. "Gravitational Spin Hall Effect in Curves Spacetimes" Physical Sciences Forum 7, no. 1: 40. https://doi.org/10.3390/ECU2023-14050
APA StyleDahal, P. K. (2023). Gravitational Spin Hall Effect in Curves Spacetimes. Physical Sciences Forum, 7(1), 40. https://doi.org/10.3390/ECU2023-14050