Search for Exoplanets with a Possible Surface Water Ocean †
Abstract
1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Heatmap Analysis of Various Parameters
3.2. Evaluation of the Connection between Various Parameters
3.2.1. The Planetary Radius
3.2.2. Semi-Major Axis
3.2.3. Number of Planets in the System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977. [Google Scholar] [CrossRef] [PubMed]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.-J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef]
- Sullivan, P.W.; Winn, J.N.; Berta-Thompson, Z.; Charbonneau, D.; Deming, D.; Dressing, C.D.; Latham, D.W.; Levine, A.M.; McCullough, P.R.; Morton, T.D.; et al. The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives. Astrophys. J. 2015, 809, 77. [Google Scholar] [CrossRef]
- NASA Exoplanet Science Institute. Planetary Systems Composite Table. Available online: https://doi.org/10.26133/NEA13 (accessed on 15 December 2022).
- Piaulet, C.; Benneke, B.; Almenara, J. Evidence for the volatile-rich composition of a 1.5-earth-radius planet. Nat. Astron. 2022, 1–17. [Google Scholar] [CrossRef]
- Léger, A.; Selsis, F.; Sotin, C.; Guillot, T.; Despois, D.; Mawet, D.; Ollivier, M.; Labèque, A.; Valette, C.; Brachet, F.; et al. A new family of planets? “Ocean-Planets”. Icarus 2004, 169, 499–504. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T. Formation of early water oceans on rocky planets. Astrophys. Space Sci. 2011, 332, 359–364. [Google Scholar] [CrossRef]
- Kimura, T.; Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs. Nat. Astron. 2022, 6, 1296–1307. [Google Scholar] [CrossRef]
- Olson, S.L.; Jansen, M.; Abbot, D.S. Oceanographic Considerations for Exoplanet Life Detection. Astrophys. J. 2020, 895, 19. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Méndez, A.; Fairén, A.G.; Von Paris, P.; Turse, C.; Boyer, G.; Davila, A.F.; Walther-Antonio, M.; Catling, D.; Irwin, L.N. A Two-Tiered Approach to Assessing the Habitability of Exoplanets. Astrobiology 2011, 11, 1041–1052. [Google Scholar] [CrossRef]
- Dole, S.H. Habitable Planets for Man; RAND Corporation: Santa Monica, CA, USA, 1970. [Google Scholar] [CrossRef]
- Kopparapu, R.K.; Ramirez, R.; Kasting, J.F.; Eymet, V.; Robinson, T.D.; Mahadevan, S.; Terrien, R.C.; Domagal-Goldman, S.; Meadows, V.S.; Deshpande, R. Habitable Zones around Main-sequence Stars: New Estimates. ApJ 2013, 765, 131. [Google Scholar] [CrossRef]
- Kasting, J.F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 1988, 74, 472–494. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F. CO2 condensation and the climate of early Mars. Icarus 1991, 94, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gaudi, B.S.; Stassun, K.G.; Collins, K.A.; Beatty, T.G.; Zhou, G.; Latham, D.W.; Bieryla, A.; Eastman, J.D.; Siverd, R.J.; Crepp, J.R.; et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 2017, 546, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Lissauer, J.J. Planet Formation. Annu. Rev. Astron. Astrophys. 1993, 31, 129–172. [Google Scholar] [CrossRef]
- Fischer, D.A.; Valenti, J. The Planet-Metallicity Correlation. Astrophys. J. 2005, 622, 1102–1117. [Google Scholar] [CrossRef]
- Lineweaver, C.H. An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect. Icarus 2001, 151, 307–313. [Google Scholar] [CrossRef]
- Johnson, J.A.; Aller, K.M.; Howard, A.W.; Crepp, J.R. Giant Planet Occurrence in the Stellar Mass-Metallicity Plane. PASP 2010, 122, 905. [Google Scholar] [CrossRef]
- Santos, N.C.; Israelian, G.; Mayor, M. Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. Astron. Astrophys. 2004, 415, 1153–1166. [Google Scholar] [CrossRef]
- Kipping, D.M.; Sandford, E. Observational biases for transiting planets. MNRAS 2016, 463, 1323–1331. [Google Scholar] [CrossRef]
- Dressing, C.D.; Spiegel, D.S.; Scharf, C.A.; Menou, K.; Raymond, S.N. Habitable Climates: The Influence of Eccentricity. Astrophys. J. 2010, 721, 1295–1307. [Google Scholar] [CrossRef]
- Rodriguez, A.; Ferraz-Mello, S. Tidal decay and circularization of the orbits of short-period planets. EAS Publ. Ser. 2010, 42, 411–418. [Google Scholar] [CrossRef]
- Jackson, B.; Greenberg, R.; Barnes, R. Tidal Evolution of Close-in Extrasolar Planets. Astrophys. J. 2008, 678, 1396–1406. [Google Scholar] [CrossRef]
- Kite, E.S.; Gaidos, E.; Manga, M. Climate Instability on Tidally Locked Exoplanets. Astrophys. J. 2011, 743, 41. [Google Scholar] [CrossRef]
- Wordsworth, R. Atmospheric Heat Redistribution and Collapse on Tidally Locked Rocky Planets. Astrophys. J. 2015, 806, 180. [Google Scholar] [CrossRef]
- Wordsworth, R.D.; Forget, F.; Selsis, F.; Millour, E.; Charnay, B.; Madeleine, J.-B. Gliese 581d is the First Discovered Terrestrial-mass Exoplanet in the Habitable Zone. Astrophys. J. 2011, 733, L48. [Google Scholar] [CrossRef]
- Dong, C.; Huang, Z.; Lingam, M.; Tóth, G.; Gombosi, T.; Bhattacharjee, A. The dehydration of water worlds via atmospheric losses. Astrophys. J. 2017, 847, L4. [Google Scholar] [CrossRef]
- Vida, K.; Kővári, Z.; Pál, A.; Oláh, K.; Kriskovics, L. Frequent Flaring in the TRAPPIST-1 System Unsuited for Life? Astrophys. J. 2017, 841, 124. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Kenyon, S.J. Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets. ApJ 2008, 673, 502–512. [Google Scholar] [CrossRef]
- Veras, D.; Tremblay, P.-E.; Hermes, J.J.; McDonald, C.H.; Kennedy, G.M.; Meru, F.; Gänsicke, B.T. Constraining planet formation around 6-8 M stars. MNRAS 2020, 493, 765–775. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, R.; Bradak, B.; Kovacs, J.; Gomez, C. Search for Exoplanets with a Possible Surface Water Ocean. Phys. Sci. Forum 2023, 7, 19. https://doi.org/10.3390/ECU2023-14020
Novak R, Bradak B, Kovacs J, Gomez C. Search for Exoplanets with a Possible Surface Water Ocean. Physical Sciences Forum. 2023; 7(1):19. https://doi.org/10.3390/ECU2023-14020
Chicago/Turabian StyleNovak, Roland, Balazs Bradak, Jozsef Kovacs, and Christopher Gomez. 2023. "Search for Exoplanets with a Possible Surface Water Ocean" Physical Sciences Forum 7, no. 1: 19. https://doi.org/10.3390/ECU2023-14020
APA StyleNovak, R., Bradak, B., Kovacs, J., & Gomez, C. (2023). Search for Exoplanets with a Possible Surface Water Ocean. Physical Sciences Forum, 7(1), 19. https://doi.org/10.3390/ECU2023-14020