LRS Bianchi I Cosmological Model with Strange Quark Matter in f(R, T) Gravity †
Abstract
:1. Introduction
2. The Formalism of Gravity
3. Model and Field Equations
4. The Behavior of Strange Quark Matter
Effective Matter
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, A.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Schmidt, B.P.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut, B.; Spyromilio, J.; et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae. Astrophys. J. 1998, 507, 46–63. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–114. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Peebles, J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Misner, C.W. The Isotropy of the Universe. Astrophys. J. 1968, 151, 431. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, 1st ed.; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R, T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Beesham, A. Plane symmetric model in f(R, T) gravity. Eur. Phys. J. Plus 2020, 135, 319. [Google Scholar] [CrossRef]
- Reddy, D.R.K.; Naidu, R.L.; Satyanarayana, B. Kaluza-Klein Cosmological Model in f(R,T) Gravity. Int. J. Theor. Phys. 2012, 51, 3222. [Google Scholar] [CrossRef]
- Ram, S.; Priyanka. Some Kaluza-Klein cosmological models in f(R, T) gravity theory. Astrophys. Space Sci. 2013, 347, 389–397. [Google Scholar] [CrossRef]
- Sharif, M.F.; Zubair, M. Energy Conditions Constraints and Stability of Power Law Solutions in f(R, T) Gravity. J. Phys. Soc. Jpn. 2013, 82, 014002. [Google Scholar] [CrossRef] [Green Version]
- Shamir, M.F. Bianchi Type I Cosmology in f(R, T) Gravity. J. Exp. Theor. Phys. 2014, 119, 242–250. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Correa, R.A.C.; Ribeiro, G. Evading the non-continuity equation in the f(R, T) cosmology. Eur. Phys. J. C 2018, 78, 192. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A. Anisotropic model with decaying cosmological term. Astrophys. Space Sci. 2018, 363, 234. [Google Scholar] [CrossRef]
- Esmaeili, F.M. Dynamics of Bianchi I Universe in Extended Gravity with Scale Factors. J. High Energy Phys. Gravit. Cosmol. 2018, 4, 716–730. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Cosmic separation of phases. Phys. Rev. D 1984, 30, 272. [Google Scholar] [CrossRef]
- Mak, M.K.; Harko, T. Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D 2004, 13, 149–156. [Google Scholar] [CrossRef]
- Itoh, N. Hydrostatic Equilibrium of Hypothetical Quark Stars. Prog. Theor. Phys. 1970, 44, 291–292. [Google Scholar] [CrossRef] [Green Version]
- Bodmer, A.R. Collapsed Nuclei. Phys. Rev. D 1971, 4, 1601–1606. [Google Scholar] [CrossRef]
- Farhi, E.; Jaffe, R.L. Strange matter. Phys. Rev. D 1984, 30, 2379. [Google Scholar] [CrossRef]
- Alcock, C.; Farhi, E.; Olinto, A. Strange Stars. Astrophys. J. 1986, 310, 261–272. [Google Scholar] [CrossRef]
- Haensel, P.; Zdunik, J.L.; Schaefer, R. Strange quark stars. Astron Astrophys. 1986, 160, 121–128. [Google Scholar]
- Madsen, J. Physics and astrophysics of strange quark matter. In Hadrons in Dense Matter and Hadrosynthesis, Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 516, pp. 162–203. [Google Scholar]
- Drake, J.J.; Marshall, H.L.; Dreizler, S.; Freeman, P.E.; Fruscione, A.; Juda, M.; Kashyap, V.; Nicastro, F.; Pease, D.O.; Wargelin, B.J.; et al. Is RX J185635-375 a Quark Star? Astrophys. J. 2002, 572, 996–1001. [Google Scholar] [CrossRef]
- Weber, F. Strange Quark Matter and Compact Stars. Prog. Part. Nucl. Phys. 2005, 54, 193–288. [Google Scholar] [CrossRef] [Green Version]
- Aktas, C.; Yilmaz, I. Is the universe homogeneous and isotropic in the time when quark-gluon plasma exists? Gen. Relativ. Grav. 2011, 43, 1577–1591. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Pawar, D.D. Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f (R, T) Theory of Gravity. J. Astrophys. Astron. 2017, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Mahanta, K.L. Bulk viscous cosmological models in f(R,T) theory of gravity. Astrophys. Space Sci. 2014, 353, 683. [Google Scholar] [CrossRef]
- Shamir, M.F. Locally Rotationally Symmetric Bianchi Type I Cosmology in f(R,T) Gravity. Eur. Phys. J. C 2015, 75, 354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokweni, S.; Singh, V.; Beesham, A. LRS Bianchi I Cosmological Model with Strange Quark Matter in f(R, T) Gravity. Phys. Sci. Forum 2023, 7, 12. https://doi.org/10.3390/ECU2023-14037
Jokweni S, Singh V, Beesham A. LRS Bianchi I Cosmological Model with Strange Quark Matter in f(R, T) Gravity. Physical Sciences Forum. 2023; 7(1):12. https://doi.org/10.3390/ECU2023-14037
Chicago/Turabian StyleJokweni, Siwaphiwe, Vijay Singh, and Aroonkumar Beesham. 2023. "LRS Bianchi I Cosmological Model with Strange Quark Matter in f(R, T) Gravity" Physical Sciences Forum 7, no. 1: 12. https://doi.org/10.3390/ECU2023-14037
APA StyleJokweni, S., Singh, V., & Beesham, A. (2023). LRS Bianchi I Cosmological Model with Strange Quark Matter in f(R, T) Gravity. Physical Sciences Forum, 7(1), 12. https://doi.org/10.3390/ECU2023-14037