Towards Moment-Constrained Causal Modeling †
Abstract
:1. Introduction
2. Causal Inference and Bayesian Generative Models
2.1. The Bivariate Problem
2.2. Causal Inference and IFT
2.3. SCMs and Bayesian Generative Modeling
3. From Additive Noise Models to MCM
3.1. The Additive Noise Model
3.2. Flexible Noise Model
3.3. From FNM to First-Order MCM
3.4. Second-Order MCM
3.5. Likelihood
3.6. Inference
3.7. Evidence Estimation
3.8. Implementation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearl, J. Models, Reasoning and Inference; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cuse and Effect; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Peters, J.; Janzing, D.; Schölkopf, B. Elements of Causal Inference; The MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Mitrovic, J.; Sejdinovic, D.; Teh, Y.W. Causal Inference via Kernel Deviance Measures. In Proceedings of the NIPS’18—32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 6986–6994. [Google Scholar]
- Spirtes, P.; Glymour, C.N.; Scheines, R.; Heckerman, D. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Sun, X.; Janzing, D.; Schölkopf, B.; Fukumizu, K. A Kernel-Based Causal Learning Algorithm. In Proceedings of the ICML ’07—24th International Conference on Machine Learning, San Francisco, CA, USA, 24–26 October 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 855–862. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Peters, J.; Janzing, D.; Schölkopf, B. Kernel-Based Conditional Independence Test and Application in Causal Discovery. In Proceedings of the UAI’11—Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July 2011; AUAI Press: Arlington, VA, USA, 2011; pp. 804–813. [Google Scholar]
- Chickering, D.M. Optimal Structure Identification with Greedy Search. J. Mach. Learn. Res. 2003, 3, 507–554. [Google Scholar] [CrossRef]
- Goudet, O.; Kalainathan, D.; Lopez-Paz, D.; Caillou, P.; Guyon, I.; Sebag, M. Causal Generative Neural Networks. arXiv 2017, arXiv:1711.08936. [Google Scholar]
- Hoyer, P.O.; Shimizu, S.; Kerminen, A.J.; Palviainen, M. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int. J. Approx. Reason. 2008, 49, 362–378. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, P.; Janzing, D.; Mooij, J.M.; Peters, J.; Schölkopf, B. Nonlinear causal discovery with additive noise models. In Advances in Neural Information Processing Systems; Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2008; Volume 21. [Google Scholar]
- Mooij, J.M.; Stegle, O.; Janzing, D.; Zhang, K.; Schölkopf, B. Probabilistic Latent Variable Models for Distinguishing between Cause and Effect. In Proceedings of the 23rd International Conference on Neural Information Processing Systems (NIPS’10), Vancouver, BC, Canada, 6–9 December 2010; Curran Associates Inc.: Red Hook, NY, USA, 2010; Volume 2, pp. 1687–1695. [Google Scholar]
- Sun, X.; Janzing, D.; Schölkopf, B. Causal reasoning by evaluating the complexity of conditional densities with kernel methods. Neurocomputing 2008, 71, 1248–1256. [Google Scholar] [CrossRef]
- Daniusis, P.; Janzing, D.; Mooij, J.; Zscheischler, J.; Steudel, B.; Zhang, K.; Schölkopf, B. Inferring deterministic causal relations. In Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, 8–11 July 2010; Max-Planck-Gesellschaft; AUAI Press: Corvallis, OR, USA, 2010; pp. 143–150. [Google Scholar]
- Janzing, D.; Mooij, J.; Zhang, K.; Lemeire, J.; Zscheischler, J.; Daniušis, P.; Steudel, B.; Schölkopf, B. Information-geometric approach to inferring causal directions. Artif. Intell. 2012, 182–183, 1–31. [Google Scholar] [CrossRef]
- Kurthen, M.; Enßlin, T. A Bayesian Model for Bivariate Causal Inference. Entropy 2019, 22, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostic, A.; Leike, R.; Hutschenreuter, S.; Kürthen, M.; Torsten, E. Bayesian Causal Inference with Information Field Theory. 2022; in press. [Google Scholar]
- Enßlin, T.A.; Frommert, M.; Kitaura, F.S. Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis. Phys. Rev. 2009, 80, 105005. [Google Scholar] [CrossRef] [Green Version]
- Enßlin, T. Information field theory. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; Volume 1553, pp. 184–191. [Google Scholar]
- Enßlin, T.A. Information theory for fields. Ann. Der Phys. 2019, 531, 1800127. [Google Scholar] [CrossRef] [Green Version]
- Enßlin, T. Information Field Theory and Artificial Intelligence. Entropy 2022, 24, 374. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Janzing, D.; Schölkopf, B. Causal Inference by Choosing Graphs with Most Plausible Markov Kernels. In Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, USA, 4–6 January 2006; Max-Planck-Gesellschaft: Munich, Germany, 2006; pp. 1–11. [Google Scholar]
- Peters, J.; Mooij, J.M.; Janzing, D.; Schölkopf, B. Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 2014, 15, 2009–2053. [Google Scholar]
- Arras, P.; Frank, P.; Haim, P.; Knollmüller, J.; Leike, R.; Reinecke, M.; Enßlin, T. Variable structures in M87* from space, time and frequency resolved interferometry. Nat. Astron. 2022, 6, 259–269. [Google Scholar] [CrossRef]
- Guardiani, M.; Frank, P.; Kostić, A.; Edenhofer, G.; Roth, J.; Uhlmann, B.; Enßlin, T. Causal, Bayesian, & non-parametric modeling of the SARS-CoV-2 viral load distribution vs. patient’s age. PLoS ONE 2022, 17, 0275011. [Google Scholar] [CrossRef]
- Shimizu, S.; Hoyer, P.O.; Hyvärinen, A.; Kerminen, A.; Jordan, M. A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 2006, 7, 2003–2030. [Google Scholar]
- Zhang, K.; Hyvärinen, A. Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models. In Proceedings of the Workshop on Causality: Objectives and Assessment at NIPS 2008, Whistler, BC, Canada, 12 December 2008; Guyon, I., Janzing, D., Schölkopf, B., Eds.; PMLR: Whistler, BC, Canada, 2010; Volume 6, pp. 157–164. [Google Scholar]
- Bareinboim, E.; Pearl, J. Controlling Selection Bias in Causal Inference. In Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, 21–23 April 2012; Lawrence, N.D., Girolami, M., Eds.; PMLR: La Palma, Canary Islands, 2012; Volume 22, pp. 100–108. [Google Scholar]
- Correa, J.; Bareinboim, E. Causal Effect Identification by Adjustment under Confounding and Selection Biases. Proc. Aaai Conf. Artif. Intell. 2017, 31. [Google Scholar] [CrossRef]
- Frank, P.; Leike, R.; Enßlin, T.A. Geometric Variational Inference. Entropy 2021, 23, 853. [Google Scholar] [CrossRef] [PubMed]
- Selig, M.; Bell, M.R.; Junklewitz, H.; Oppermann, N.; Reinecke, M.; Greiner, M.; Pachajoa, C.; Enßlin, T.A. NIFTy—Numerical Information Field Theory. A versatile Python library for signal inference. Astron. Astrophys. 2013, 554, A26. [Google Scholar] [CrossRef]
- Steininger, T.; Dixit, J.; Frank, P.; Greiner, M.; Hutschenreuter, S.; Knollmüller, J.; Leike, R.; Porqueres, N.; Pumpe, D.; Reinecke, M.; et al. NIFTy 3—Numerical Information Field Theory: A Python Framework for Multicomponent Signal Inference on HPC Clusters. Ann. Der Phys. 2019, 531, 1800290. [Google Scholar] [CrossRef] [Green Version]
- Arras, P.; Baltac, M.; Ensslin, T.A.; Frank, P.; Hutschenreuter, S.; Knollmueller, J.; Leike, R.; Newrzella, M.N.; Platz, L.; Reinecke, M.; et al. NIFTy5: Numerical Information Field Theory v5. 2019. Available online: http://xxx.lanl.gov/abs/1903.008 (accessed on 30 October 2022).
- Knuth, K.H.; Habeck, M.; Malakar, N.K.; Mubeen, A.M.; Placek, B. Bayesian evidence and model selection. Digit. Signal Process. 2015, 47, 50–67. [Google Scholar] [CrossRef]
- Cherief-Abdellatif, B.E. Consistency of ELBO maximization for model selection. In Proceedings of the 1st Symposium on Advances in Approximate Bayesian Inference, Vancouver, BC, Canada, 8 December 2019; Ruiz, F., Zhang, C., Liang, D., Bui, T., Eds.; PMLR: Vancouver, BC, Canada, 2019; Volume 96, pp. 11–31. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardiani, M.; Frank, P.; Kostić, A.; Enßlin, T. Towards Moment-Constrained Causal Modeling. Phys. Sci. Forum 2022, 5, 7. https://doi.org/10.3390/psf2022005007
Guardiani M, Frank P, Kostić A, Enßlin T. Towards Moment-Constrained Causal Modeling. Physical Sciences Forum. 2022; 5(1):7. https://doi.org/10.3390/psf2022005007
Chicago/Turabian StyleGuardiani, Matteo, Philipp Frank, Andrija Kostić, and Torsten Enßlin. 2022. "Towards Moment-Constrained Causal Modeling" Physical Sciences Forum 5, no. 1: 7. https://doi.org/10.3390/psf2022005007
APA StyleGuardiani, M., Frank, P., Kostić, A., & Enßlin, T. (2022). Towards Moment-Constrained Causal Modeling. Physical Sciences Forum, 5(1), 7. https://doi.org/10.3390/psf2022005007