Dynamical Systems over Lie Groups Associated with Statistical Transformation Models †
Abstract
:1. Introduction
2. General Framework of Statistical Transformation Models
2.1. General Definitions of Fisher–Rao (Semi-Definite) Metric and Amari–Chentsov Cubic Tensor
2.2. Statistical Transformation Models
3. Dynamical Systems Associated to Two Concrete Statistical Transformation Models
3.1. A Location-Scale Model for Gaussian Probability Density Functions
3.2. A Model for a Class of Probability Density Functions on Compact Semi-Simple Lie Groups
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amari, S.I. Information Geometry and Its Applications; Applied Mathematical Sciences 194; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; Translations of Mathematical Monographs 191; American Mathematical Society: Providence, RI, USA; Oxford University Press: Oxford, UK, 2000; Translated from the 1993 Japanese Original by D. Harada. [Google Scholar]
- Ay, N.; Jost, J.; Lê, H.V.; Schwachhöfer, L. Information Geometry; Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 64; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Barndorff-Nielsen, O.E.; Blæsild, P.; Eriksen, P.S. Decomposition and Invariance of Measures, and Statistical Transformation Models; Lecture Notes in Statistics 58; Springer: New York, NY, USA, 1989. [Google Scholar]
- Nakamura, Y. Completely integrable gradient systems on the manifolds of Gaussian and Multinomial Distributions. Jpn. J. Ind. Appl. Math. 1993, 10, 179–189. [Google Scholar] [CrossRef]
- Nakamura, Y. Neurodynamics and nonlinear integrable systems of Lax type. Jpn. J. Ind. Appl. Math. 1994, 11, 11–20. [Google Scholar] [CrossRef]
- Nakamura, Y. Gradient systems associated with probability distributions. Jpn. J. Ind. Appl. Math. 1994, 11, 21–30. [Google Scholar] [CrossRef]
- Nakamura, Y. A tau-function for the finite Toda molecule and information spaces. In Symplectic Geometry and Quantization (Sanda and Yokohama, 1993); Maeda, Y., Omori, H., Weinstein, A., Eds.; Contemp. Math.179; American Mathematical Society: Providence, RI, USA, 1994; pp. 205–211. [Google Scholar]
- Fujiwara, A.; Amari, S.I. Gradient systems in view of information geometry. Physica D 1995, 80, 317–327. [Google Scholar] [CrossRef]
- Tarama, D.; Françoise, J.P. Information Geometry and Hamiltonian Systems on Lie Groups. In Geometric Science of Information, GSI 2021; Nielsen, F., Barbaresco, F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12829, pp. 273–280. [Google Scholar]
- Tarama, D.; Françoise, J.P. Lagrangian and Hamiltonian systems over Lie groups appearing in statistical transformation models. In Proceedings of the Submanifold Geometry and Lie Group Action 2021, Online, 20–21 March 2022. To appear. [Google Scholar]
- Bloch, A.; Brockett, R.W.; Ratiu, T.S. Completely integrable gradient flows. Commun. Math. Phys. 1992, 147, 57–74. [Google Scholar] [CrossRef]
- Chentsov, N.N. Geometry of the "manifold" of a probability distribution. Dokl. Akad. Nauk SSSR 1964, 158, 543–546. [Google Scholar]
- Morozova, E.A.; Chentsov, N.N. Markov invariant geometry on state manifolds. J. Math. Sci. (N. Y.) 1991, 56, 2648–2669, Translated from Russian Itogi Nauki i Tekhniki Ser. Sovrem. Probl. Mat. Nov. Dostizh. 1989, 36, 69–102. [Google Scholar] [CrossRef]
- Morozova, E.A.; Chentsov, N.N. Natural geometry of families of probability laws. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 1991, 83, 133–265. [Google Scholar]
- Nomizu, K. Affine connections on homogeneous spaces. Am. J. Math. 1954, 76, 33–65. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry, 2nd ed.; Texts in Applied Mathematics 17; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Ratiu, T.S.; Tudoran, R.; Sbano, L.; Dias, E.S.; Terra, G. A Crash Course in Geometric Mechanics. In Geometric Mechanics and Symmetry: The Peyresq Lectures; Montaldi, J., Ratiu, T., Eds.; London Math. Soc. Lecture Note Ser. Cambridge University Press: Cambridge, UK, 2005; Volume 306, pp. 23–156. [Google Scholar]
- Ratiu, T.S.; Tarama, D. Geodesic flows on real forms of complex semi-simple Lie groups of rigid body type. Res. Math. Sci. 2020, 7, 1–37. [Google Scholar] [CrossRef]
- Kobayashi, S. Differential Geometry of Curves and Surfaces; Springer Undergraduate Mathematics Series; Springer: Singapore, 2019; Translated from the Original Japanese Version by Eriko Shinozaki Nagumo, Makiko Sumi Tanaka. [Google Scholar]
- Mishchenko, A.S.; Fomenko, A.T. Euler equations on finite-dimensional Lie groups. Math. USSR-Izv. 1978, 12, 371–389, Translated from Russ. Izvest. Akad. Nauk SSSR Ser. Matem. 1978, 42, 396–415. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarama, D.; Françoise, J.-P. Dynamical Systems over Lie Groups Associated with Statistical Transformation Models. Phys. Sci. Forum 2022, 5, 21. https://doi.org/10.3390/psf2022005021
Tarama D, Françoise J-P. Dynamical Systems over Lie Groups Associated with Statistical Transformation Models. Physical Sciences Forum. 2022; 5(1):21. https://doi.org/10.3390/psf2022005021
Chicago/Turabian StyleTarama, Daisuke, and Jean-Pierre Françoise. 2022. "Dynamical Systems over Lie Groups Associated with Statistical Transformation Models" Physical Sciences Forum 5, no. 1: 21. https://doi.org/10.3390/psf2022005021
APA StyleTarama, D., & Françoise, J. -P. (2022). Dynamical Systems over Lie Groups Associated with Statistical Transformation Models. Physical Sciences Forum, 5(1), 21. https://doi.org/10.3390/psf2022005021