Additive Manufacturing of Lattice Structured Hot Stamping Dies with Improved Thermal Performance †
Abstract
:1. Introduction
2. Methods
2.1. Lattice Structured Design for Additively Manufactured Hot Stamping Dies
2.2. Additive Manufacturing of Dies
2.3. Apparatus for Simulating Hot Stamping Processes: IHTC-Mate
3. Results and Discussion
- The cooling rate from 425 ℃ to 180 ℃ in the cycle should have a minimum value. This value is determined from analysis of the continuous cooling precipitation (CCP) diagram of A7075-T6 [12].
- The blank must reach a temperature below 100 ℃, which is lower than the artificial ageing temperature of AA7075 (120 ℃), in less than 5 s.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Elfakir, O.; Sun, Y.; Ji, K.; Luan, X.; Cai, Z.; Liu, X. A method of forming parts from sheet metal. International Patent WO/2019/038556, 28 February 2019. [Google Scholar]
- Zhang, Q.; Luan, X.; Dhawan, S.; Politis, D.J.; Du, Q.; Fu, M.W.; Wang, K.; Gharbi, M.M.; Wang, L. Development of the post-form strength prediction model for a high-strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations. Int. J. Plast. 2019, 119, 230–248. [Google Scholar] [CrossRef]
- Fernández, B.; González, B.; Artola, G.; de Lacalle, N.L.; Angulo, C. A quick cycle time sensitivity analysis of boron steel hot stamping. Metals 2019, 9, 235. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Cortina, M.; Arrizubieta, J.I.; Calleja, A.; Ukar, E.; Alberdi, A. Case study to illustrate the potential of conformal cooling channels for hot stamping dies manufactured using hybrid process of laser metal deposition (LMD) and milling. Metals 2018, 8, 102. [Google Scholar] [CrossRef]
- Muller, B.; Gebauer, M.; Hund, R.; Malek, R.; Gerth, N. Metal Additive Manufacturing for tooling applications—Aser Beam Melting technology increases efficiency of dies and molds. In Proceedings of the Metal Additive Manufacturing Conference MAMC, Vienna, Austria, 20–21 November 2014; pp. 1–14. [Google Scholar]
- Brooks, H.; Brigden, K. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling. Addit. Manuf. 2016, 11, 16–22. [Google Scholar] [CrossRef]
- Lin, Z.-C.; Chou, M.-H. Design of the cooling channels in nonrectangular plastic flat injection mold. J. Manuf. Syst. 2002, 21, 167–186. [Google Scholar] [CrossRef]
- Lim, W.-S.; Choi, H.-S.; Ahn, S.-Y.; Kim, B.-M. Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process. Int. J. Adv. Manuf. Technol. 2014, 70, 1189–1203. [Google Scholar] [CrossRef]
- Simson, T.; Emmel, A.; Dwars, A.; Böhm, J. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 2017, 17, 183–189. [Google Scholar] [CrossRef]
- Liu, X.; El Fakir, O.; Zheng, Y.; Gharbi, M.M.; Wang, L. Effect of tool coatings on the interfacial heat transfer coefficient in hot stamping of aluminium alloys under variable contact pressure conditions. Int. J. Heat Mass Transf. 2019, 137, 74–83. [Google Scholar] [CrossRef]
- Zheng, K.; Dong, Y.; Zheng, J.-H.; Foster, A.; Lin, J.; Dong, H.; Dean, T.A. The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys. Mater. Sci. Eng. A 2019, 761, 138017. [Google Scholar] [CrossRef]
AM Parameters | Value |
---|---|
Laser power | Hatching: 90 W Contour: 60 W |
Scan speed | 600 mm/s |
Spot size | 35 um |
Hatch distance | 84 um |
Layer thickness | 25 um |
Chamber gas | Nitrogen |
Element | w % |
---|---|
C | 0.03 |
Cr | 17.5 |
Cu | 0.5 |
Fe | Balance |
Mn | 2.0 |
Mo | 2.25 |
Ni | 12.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chantzis, D.; Liu, X.; Politis, D.J.; Wang, L. Additive Manufacturing of Lattice Structured Hot Stamping Dies with Improved Thermal Performance. Phys. Sci. Forum 2022, 4, 25. https://doi.org/10.3390/psf2022004025
Chantzis D, Liu X, Politis DJ, Wang L. Additive Manufacturing of Lattice Structured Hot Stamping Dies with Improved Thermal Performance. Physical Sciences Forum. 2022; 4(1):25. https://doi.org/10.3390/psf2022004025
Chicago/Turabian StyleChantzis, Dimitrios, Xiaochuan Liu, Denis J. Politis, and Liliang Wang. 2022. "Additive Manufacturing of Lattice Structured Hot Stamping Dies with Improved Thermal Performance" Physical Sciences Forum 4, no. 1: 25. https://doi.org/10.3390/psf2022004025
APA StyleChantzis, D., Liu, X., Politis, D. J., & Wang, L. (2022). Additive Manufacturing of Lattice Structured Hot Stamping Dies with Improved Thermal Performance. Physical Sciences Forum, 4(1), 25. https://doi.org/10.3390/psf2022004025