#
On Spacetime Duality and Bounce Cosmology of a Dual Universe^{ †}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Extended Field Equations for a Conformally Curved Universe

## 3. Bounce from a Closed Early Universe

## 4. Evolution of Universe Worldlines

^{−1}∙Mpc

^{−1}and a phase transition of expansion at the Universe’s age of $~10$ Gyr were applied to tune the integration constants of the derived model, where the predicted energy density parameter is $~1.16$.

## 5. Spiral Galaxy Formation and Rotation under External Fields

## 6. Early Universe Boundary Contribution

## 7. Conclusions and Future Works

## Supplementary Materials

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Tolman, R.C. On the theoretical requirements for a periodic behaviour of the universe. Phys. Rev.
**1931**, 38, 1758–1771. [Google Scholar] [CrossRef] - Minas, G.; Saridakis, E.N.; Stavrinos, P.C.; Triantafyllopoulos, A. Bounce cosmology in generalized modified gravities. Universe
**2019**, 5, 74. [Google Scholar] [CrossRef] [Green Version] - Singh, T.; Chaubey, R.; Singh, A. Bounce conditions for FRW models in modified gravity theories. Eur. Phys. J. Plus
**2015**, 130, 1–9. [Google Scholar] [CrossRef] - Cai, Y.F.; Easson, D.A.; Brandenberger, R. Towards a nonsingular bouncing cosmology. J. Cosmol. Astropart. Phys.
**2012**, 2012, 020. [Google Scholar] [CrossRef] - Klein, O. Instead of cosmology. Nature
**1966**, 211, 1337–1341. [Google Scholar] [CrossRef] - Klein, O. Arguments concerning relativity and cosmology. Science
**1971**, 171, 339–345. [Google Scholar] [CrossRef] [PubMed] - Di Valentino, E.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron.
**2020**, 4, 196–203. [Google Scholar] [CrossRef] [Green Version] - Handley, W. Curvature tension: Evidence for a closed universe. Phys. Rev. D
**2021**, 103, L041301. [Google Scholar] [CrossRef] - Landau, L.D. Theory of Elasticity; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Straumann, N. General Relativity (Graduate Texts in Physics); Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rugh, S.E.; Zinkernagel, H. The Quantum Vacuum and the Cosmological Constant Problem. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys.
**2000**, 33, 663–705. [Google Scholar] [CrossRef] [Green Version] - Minami, Y.; Komatsu, E. New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett.
**2020**, 125, 221301. [Google Scholar] [CrossRef] [PubMed] - Al-Fadhli, M.B. Extended General Relativity for a Conformally Curved Universe. 2021. Preprints. Available online: https://www.preprints.org/manuscript/202010.0320/v5 (accessed on 22 June 2021).
- Kozameh, C.; Newman, E.; Gravitation, K.T.-G. Relativity and gravitation, and undefined 1985. In Conformal Einstein Spaces; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Gannouji, R.; Kazantzidis, L.; Perivolaropoulos, L.; Polarski, D. Consistency of Modified Gravity with a decreasing G
_{eff}(z) in a ΛCDM background. Phys. Rev. D**2018**, 98, 104044. [Google Scholar] [CrossRef] [Green Version] - Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv
**2021**, arXiv:2105.12582. [Google Scholar] - Chae, K.H.; Lelli, F.; Desmond, H.; McGaugh, S.S.; Li, P.; Schombert, J.M. Testing the strong equivalence principle: Detection of the external field effect in rotationally supported galaxies. Astrophys. J.
**2020**, 904, 51. [Google Scholar] [CrossRef] - Dyer, E.; Hinterbichler, K. Boundary terms, variational principles, and higher derivative modified gravity. Phys. Rev. D
**2009**, 79, 024028. [Google Scholar] [CrossRef] [Green Version] - Lachì Eze-Rey, M.; Luminet, J.-P. Cosmic topology. arXiv
**2003**, arXiv:gr-qc/9605010v2. [Google Scholar] - Ellis, G.F.R.; van Elst, H. Cosmological Models (Cargese Lectures 1998). Available online: https://arxiv.org/abs/gr-qc/9812046 (accessed on 13 March 2020).
- Ryden, B. Introduction to Cosmology; Addison Wesley: San Francisco, CA, USA, 2006; ISBN 0-8053-8912-1. [Google Scholar]
- Ryskin, G. Vanishing vacuum energy. Astropart. Phys.
**2020**, 115, 102387. [Google Scholar] [CrossRef] - Chiang, Y.-K.; Makiya, R.; Ménard, B.; Komatsu, E. The Cosmic Thermal History Probed by Sunyaev-Zeldovich Effect Tomography. Astrophys. J.
**2020**, 902, 56. [Google Scholar] [CrossRef] - Wittenburg, N.; Kroupa, P.; Famaey, B. The formation of exponential disk galaxies in MOND. Astrophys. J.
**2020**, 890, 173. [Google Scholar] [CrossRef] - Pavel, G. Introduction to Tensor Analysis and the Calculus of Moving Surfaces; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Becerra-Vergara, E.A.; Argüelles, C.R.; Krut, A.; Rueda, J.A.; Ruffini, R. Hinting a dark matter nature of Sgr A* via the S-stars. Mon. Not. R. Astron. Soc. Lett.
**2021**, 505, L64–L68. [Google Scholar] [CrossRef] - Reid, S.; Podolefsky, H.; Pual, A. Fluid Pressure and Flow, PhET Interactive Simulations. Available online: https://phet.colorado.edu/en/simulation/legacy/fluid-pressure-and-flow (accessed on 5 August 2020).
- McGaugh, S.S. The baryonic tully-fisher relation of gas-rich galaxies as a test of ΛcDM and MOND. Astron. J.
**2012**, 143, 40. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The hypersphere of a positively curved early Universe plasma expansion upon the CMB emissions. ${r}_{p}$ is the reference radius of the intrinsic curvature and ${a}_{p}$ is the reference scale factor of the early Universe at the corresponding reference time ${t}_{p}$. ${\widehat{n}}_{u}$ and ${\overrightarrow{t}}_{v}$ are the normal and tangential vectors on the manifold boundary respectively regarding the extrinsic curvature.

**Figure 2.**(

**a**) Evolution of the wavefunction of matter/antimatter of one side of the Universe, and a radiation only wavefunction, in addition to the straight line of light cone (diagram is not to scale). (

**b**) The evolution of Hubble parameter, $H$, and its rate. The orange curves show a deceleration during the first $~10$ Gyr followed by an accelerated expansion rate.

**Figure 3.**(

**a**) A 2D schematic of the predicted cosmic topology of both sides at the first phase away from the early plasma, while the second phase corresponds to the reversal of the expansion direction. The future third phase corresponds to a spatial contraction, leading to a Big Crunch. (

**b**) The apparent topology during the first and second phases caused by gravitational lensing effects.

**Figure 4.**Schematic of the 3D spatial and 1D temporal dimensions of both sides, according to the wavefunction of space-time worldlines. (

**a**) In the first phase, both sides expand away from the early plasma. (

**b**) In the second stage, both sides expand in reverse directions and free-fall towards each other under gravitational acceleration. In the third phase, both sides contract leading to the big Crunch. Blue circles represent 3D slices of the Universe that are not necessarily simple path connected slices.

**Figure 5.**The hypersphere of a compact core of a galaxy (the red-orange 4D hypersphere representing the local relativistic space-time of the cloud forming a galaxy) along its travel and spin through the conformal space-time (the blue-purple 4D independent background) of a pre-existing curvature that evolves over cosmic time.

**Figure 6.**(

**a**) External fields exerted on a galaxy as it travels through conformally curved space-time. Green curves represent the divergence in the conformal space-time curvature over cosmic time. Blue curves represent the simulated space-time continuum flux. (

**b**) Simulation of a spiral galaxy rotation under external fields, where the blue represents the slowest tangential speeds, and red represents the fastest speeds.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Fadhli, M.B.
On Spacetime Duality and Bounce Cosmology of a Dual Universe. *Phys. Sci. Forum* **2021**, *2*, 61.
https://doi.org/10.3390/ECU2021-09291

**AMA Style**

Al-Fadhli MB.
On Spacetime Duality and Bounce Cosmology of a Dual Universe. *Physical Sciences Forum*. 2021; 2(1):61.
https://doi.org/10.3390/ECU2021-09291

**Chicago/Turabian Style**

Al-Fadhli, Mohammed B.
2021. "On Spacetime Duality and Bounce Cosmology of a Dual Universe" *Physical Sciences Forum* 2, no. 1: 61.
https://doi.org/10.3390/ECU2021-09291