On the Quantum Origin of a Dark Universe †
Abstract
:1. Introduction
2. BEC Cosmological Formulation in the Standard Setup
3. BEC Cosmological Evolution and the Unified Dark Sector
- First of all, the total matter density of the universe has to be positive definite. Therefore, apart from being positive-valued by definition, the parameter , so that by Equation (31), (of course, under the presumption that and , which in turn imply as well as ).
- Moreover, the overall credibility of a BEC cosmological formulation demands that the energy density due to the BEC should not exceed the total matter density. Referring therefore to the present epoch, we should have , so that by Equations (30) and (31),
4. Conclusions and Outlook
Acknowledgments
References
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of Dark Energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.; Tsujikawa, S. Dark Energy: Theory and Observations; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Wolschin, G. Lectures on Cosmology: Accelerated Expansion of the Universe; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Matarrese, S.; Colpi, M.; Gorini, V.; Moschella, U. Dark Matter and Dark Energy: A Challenge for Modern Cosmology; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef] [Green Version]
- Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, S.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 2018, 78, 203. [Google Scholar] [CrossRef] [PubMed]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127. [Google Scholar] [CrossRef] [Green Version]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137. [Google Scholar] [CrossRef]
- Turner, M.S. Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation of State. Phys. Rev. Lett. 1998, 80, 1582. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. Quintessence and the Rest of the World: Suppressing Long-Range Interactions. Phys. Rev. Lett. 1998, 81, 3067. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.-M.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Tsujikawa, S. Quintessence: A review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Phys. Rev. Lett. 2000, 85, 4438. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Essentials of k-essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Malquarti, M.; Copeland, E.J.; Liddle, A.R.; Trodden, M. A new view of k-essence. Phys. Rev. D 2003, 67, 123503. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, R.J. Purely Kinetic k Essence as Unified Dark Matter. Phys. Rev. Lett. 2004, 93, 011301. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Das, S. Multiple kinetic k-essence, phantom barrier crossing and stability. JCAP 2009, 01, 007. [Google Scholar] [CrossRef]
- Piazza, F.; Tsujikawa, S. Dilatonic ghost condensate as dark energy. JCAP 2004, 07, 004. [Google Scholar] [CrossRef]
- Bagla, J.S.; Jassal, H.K.; Padmanabhan, T. Cosmology with tachyon field as dark energy. Phys. Rev. D 2003, 67, 063504. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Liddle, A.R. Tachyon dark energy models: Dynamics and constraints. Phys. Rev. D 2006, 74, 043528. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.J.A.P.; Moucherek, F.M.O. Cosmological and astrophysical constraints on tachyon dark energy models. Phys. Rev. D 2016, 93, 123524. [Google Scholar] [CrossRef] [Green Version]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Lu, J.; Wang, Y. Revisiting generalized Chaplygin gas as a unified dark matter and dark energy model. Eur. Phys. J. C 2012, 72, 1883. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe. Phys. Rev. D 2006, 74, 086005. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rept. 2012, 513, 1. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62, 043511. [Google Scholar] [CrossRef] [Green Version]
- Comelli, D.; Pietroni, M.; Riotto, A. Dark energy and dark matter. Phys. Lett. B 2003, 571, 115. [Google Scholar] [CrossRef] [Green Version]
- Farrar, G.R.; Peebles, P.J.E. Interacting Dark Matter and Dark Energy. Astrophys. J. 2004, 604, 1. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Wang, A. Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. JCAP 2005, 03, 002. [Google Scholar] [CrossRef]
- Bertacca, D.; Bartolo, N.; Mataresse, S. Unified Dark Matter Scalar Field Models. Adv. Astron. 2010, 2010, 904379. [Google Scholar] [CrossRef] [Green Version]
- Bertacca, D.; Bruni, M.; Piattella, O.F.; Pietrobon, D. Unified Dark Matter scalar field models with fast transition. JCAP 2011, 02, 018. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-H.; Zhang, X. Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints. Phys. Rev. D 2014, 89, 083009. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence. Eur. Phys. J. C 2016, 76, 90. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y.; Maeda, K. The Scalar-Tensor Theory of Gravitation; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity; Kluwer Academic: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in a (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D 2004, 70, 043539. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, T.; Tegmark, M.; Bunn, E.F.; Mao, Y. Constraining f(R) gravity as a scalar-tensor theory. Phys. Rev. D 2007, 76, 063505. [Google Scholar] [CrossRef] [Green Version]
- Boisseau, B.; Giacomini, H.; Polarski, D. Bouncing universes in scalar-tensor gravity around conformal invariance. JCAP 2016, 05, 048. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Bhatia, A.S. Weakly dynamic dark energy via metric-scalar couplings with torsion. JCAP 2017, 07, 039. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, A.S.; Sur, S. Dynamical system analysis of dark energy models in scalar coupled Metric-Torsion theories. Int. J. Mod. Phys. D 2017, 26, 1750149. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.K.; Sur, S. Growth of Matter Perturbations in an Interacting Dark Energy Scenario Emerging from Metric-Scalar-Torsion Couplings. arXiv 2021, arXiv:2102.01525[gr-qc]. [Google Scholar]
- Chamseddine, A.H.; Mukhanov, V. Mimetic dark matter. JHEP 2013, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Chamseddine, A.H.; Mukhanov, V.; Vikman, A. Cosmology with Mimetic Matter. JCAP 2014, 06, 017. [Google Scholar] [CrossRef]
- Sebastiani, L.; Vagnozzi, S.; Myrzakulov, R. Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics. Adv. High Energy Phys. 2017, 2017, 3156915. [Google Scholar] [CrossRef]
- Chothe, H.R.; Dutta, A.; Sur, S. Cosmological dark sector from a mimetic–metric–torsion perspective. Int. J. Mod. Phys. D 2019, 28, 1950174. [Google Scholar] [CrossRef] [Green Version]
- Sur, S.; Dutta, A.; Chothe, H.R. Mimetic-Metric-Torsion with Induced Axial Mode and Phantom Barrier Crossing. Eur. Phys. J. C 2021, 81, 306. [Google Scholar] [CrossRef]
- Das, S. Quantum Raychaudhuri equation. Phys. Rev. D 2014, 89, 084068. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Bhaduri, R.K. Dark matter and dark energy from a Bose–Einstein condensate. Class. Quant. Grav. 2015, 32, 105003. [Google Scholar] [CrossRef]
- Das, S.; Bhaduri, R.K. Bose-Einstein condensate in cosmology. Phys. News 2019, 49, 81. [Google Scholar]
- Das, S.; Bhaduri, R.K. On the Quantum Origin of a Small Positive Cosmological Constant. arXiv 2018, arXiv:1812.07647[gr-qc]. [Google Scholar]
- Sahni, V.; Wang, L. New cosmological model of quintessence and dark matter. Phys. Rev. D 2000, 62, 103517. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Phys. Rev. Lett. 2000, 85, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urena-Lopez, L.A. Bose-Einstein condensation of relativistic Scalar Field Dark Matter. JCAP 2009, 01, 14. [Google Scholar] [CrossRef] [Green Version]
- Li, B. Cosmology with Bose-Einstein-Condensed Scalar Field Dark Matter. Master of Arts Thesis, University of Texas, Austin, TX, USA, 2013. [Google Scholar]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. Aether as a superfluid state of particle-antiparticle pairs. Found. Phys. 1976, 6, 65. [Google Scholar] [CrossRef]
- Sinha, K.P.; Sivaram, C.; Sudarshan, E.C.G. The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models. Found. Phys. 1976, 6, 717. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Malomed, B.A.; Zeldovich, Y.B. Gravitational instability of scalar fields and formation of primordial black holes. Mon. Not. Roy. Astron. Soc. 1985, 215, 575. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Sakharov, A.S.; Sokoloff, D.D. The nonlinear modulation of the density distribution in standard axionic CDM and its cosmological impact. Nucl. Phys. B (Proc. Suppl.) 1999, 72, 105. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, T.; Morikawa, M. The Relativistic Gross-Pitaevskii Equation and Cosmological Bose-Einstein Condensation: Quantum Structure in the Universe. Prog. Theo. Phys. 2006, 115, 1047. [Google Scholar] [CrossRef] [Green Version]
- Moffat, J.W. Spectrum of Cosmic Microwave Fluctuations and the Formation of Galaxies in a Modified Gravity Theory. arXiv 2006, arXiv:astro-ph/0602607. [Google Scholar]
- Wang, X.Z. Cold Bose stars: Self-gravitating Bose-Einstein condensates. Phys. Rev. D 2001, 64, 124009. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T. Can dark matter be a Bose–Einstein condensate? JCAP 2007, 06, 025. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Mocanu, G. Cosmological evolution of finite temperature Bose-Einstein condensate dark matter. Phys. Rev. D 2012, 85, 084012. [Google Scholar] [CrossRef] [Green Version]
- Sikivie, P. Dark matter axions. Int. J. Mod. Phys. A 2010, 25, 554. [Google Scholar] [CrossRef]
- Chavanis, P.-H. Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter. Astron. Astrophys. 2012, 537, A127. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Gomez, C. Black hole’s quantum N-portrait. Fortsch. Phys. 2013, 61, 742. [Google Scholar] [CrossRef] [Green Version]
- Ziaeepour, H. Dark Energy Condensate and Vacuum Energy. Springer Proc. Phys. 2014, 145, 297. [Google Scholar]
- Kain, B.; Ling, H.Y. Cosmological inhomogeneities with Bose-Einstein condensate dark matter. Phys. Rev. D 2012, 85, 023527. [Google Scholar] [CrossRef] [Green Version]
- Suárez, A.; Robles, V.; Matos, T. A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model. Astrophys. Space Sci. Proc. 2014, 38, 107. [Google Scholar]
- Ebadi, Z.; Mirza, B.; Mohammadzadeh, H. Infinite statistics condensate as a model of dark matter. JCAP 2013, 11, 057. [Google Scholar] [CrossRef] [Green Version]
- Dwornik, M.; Keresztes, Z.; Gergely, L.A. Recent Development in Dark Matter Research; Kinjo, N., Nakajima, A., Eds.; Nova Science Publishers: New York, NY, USA, 2014; p. 195. [Google Scholar]
- Dwornik, M.; Keresztes, Z.; Kun, E.; Gergely, L.A. Bose-Einstein Condensate Dark Matter Halos Confronted with Galactic Rotation Curves. Adv. High Energy Phys. 2017, 2017, 4025386. [Google Scholar] [CrossRef]
- Bettoni, D.; Colombo, M.; Liberati, S. Dark matter as a Bose-Einstein Condensate: The relativistic non-minimally coupled case. JCAP 2014, 02, 004. [Google Scholar] [CrossRef] [Green Version]
- Gielen, S. Quantum cosmology of (loop) quantum gravity condensates: An example. Class. Quant. Grav. 2014, 31, 155009. [Google Scholar] [CrossRef] [Green Version]
- Schive, H.-Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496. [Google Scholar] [CrossRef]
- Davidson, S. Axions: Bose Einstein condensate or classical field? Astropart. Phys. 2015, 65, 101. [Google Scholar] [CrossRef] [Green Version]
- Cadoni, M.; Casadio, R.; Giusti, A.; Mück, W.; Tuveri, M. Effective fluid description of the dark universe. Phys. Lett. B 2018, 776, 242. [Google Scholar] [CrossRef]
- Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M. Emergence of a dark force in corpuscular gravity. Phys. Rev. D 2018, 97, 044047. [Google Scholar] [CrossRef] [Green Version]
- Brack, M.; Bhaduri, R.K. Semiclassical Physics; Westview Press: Boulder, CO, USA, 2003. [Google Scholar]
- Grether, M.; de Llano, M.; Baker, G.A., Jr. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas. Phys. Rev. Lett. 2007, 99, 200406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, S.; Kimura, T.; Zheng, Y. On the Bose-Einstein condensation of free relativistic bosons with or without mass. Found. Phys. 1991, 21, 1117. [Google Scholar] [CrossRef]
- Haber, H.E.; Weldon, H.A. Thermodynamics of an Ultrarelativistic Ideal Bose Gas. Phys. Rev. Lett. 1981, 46, 1497. [Google Scholar] [CrossRef]
- Das, S.; Sharma, M.K.; Sur, S. Growth of matter perturbations in a dark universe of quantum origin. In preparation.
- Kun, E.; Keresztes, Z.; Das, S.; Gergely, L.A. Dark Matter as a Non-Relativistic Bose–Einstein Condensate with Massive Gravitons. Symmetry 2018, 10, 520. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Sharma, M.K.; Sur, S. On the Quantum Origin of a Dark Universe. Phys. Sci. Forum 2021, 2, 55. https://doi.org/10.3390/ECU2021-09289
Das S, Sharma MK, Sur S. On the Quantum Origin of a Dark Universe. Physical Sciences Forum. 2021; 2(1):55. https://doi.org/10.3390/ECU2021-09289
Chicago/Turabian StyleDas, Saurya, Mohit Kumar Sharma, and Sourav Sur. 2021. "On the Quantum Origin of a Dark Universe" Physical Sciences Forum 2, no. 1: 55. https://doi.org/10.3390/ECU2021-09289
APA StyleDas, S., Sharma, M. K., & Sur, S. (2021). On the Quantum Origin of a Dark Universe. Physical Sciences Forum, 2(1), 55. https://doi.org/10.3390/ECU2021-09289