Testing General Relativity vs. Alternative Theories of Gravitation with the SaToR-G Experiment †
Abstract
:1. The Goals of SaToR-G
2. The Theoretical Framework of SaToR-G
3. The Legacy from LARASE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Johnson, C.W.; Lundquist, C.A.; Zurasky, J.L. (Eds.) The Lageos Satellite. In Proceedings of the Anaheim International Astronautical Federation Congress, Anaheim, CA, USA, 10–16 October 1976. [Google Scholar]
- National Aeronautics and Space Administration. LAGEOS Phase B Technical Report, NASA Technical Memorandum X-64915; Technical Report TMX-64915; Marshall Space Flight Center: Huntsville, AL, USA, 1975.
- Fontana, F. Physical Properties of LAGEOS II Satellite; Technical Report LG-TN-AI-037; Aeritalia: Torino, Italy, 1989. [Google Scholar]
- Paolozzi, A.; Ciufolini, I. LARES successfully launched in orbit: Satellite and mission description. Acta Astronaut. 2013, 91, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Degnan, J.J. Satellite laser ranging: Current status and future prospects. IEEE Trans. Geosci. Remote Sens. 1985, 23, 398–413. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The International Laser Ranging Service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. f( R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Fujii, Y. Dilaton and Possible Non–Newtonian Gravity. Nat. Phys. Sci. 1971, 234, 5–7. [Google Scholar] [CrossRef]
- Damour, T.; Piazza, F.; Veneziano, G. Runaway Dilaton and Equivalence Principle Violations. Phys. Rev. Lett. 2002, 89, 081601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischbach, E.; Sudarsky, D.; Szafer, A.; Talmadge, C.; Aronson, S.H. Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 1986, 56, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, D.M. The LAGEOS satellites orbit and Yukawa-like interactions. Adv. Space Res. 2011, 47, 1232–1237. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Peron, R. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non–Newtonian Gravity. Phys. Rev. Lett. 2010, 105, 231103. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Peron, R. LAGEOS II pericenter general relativistic precession (1993-2005): Error budget and constraints in gravitational physics. Phys. Rev. D 2014, 89, 082002. [Google Scholar] [CrossRef]
- Nordtvedt, K. Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev. 1968, 169, 1017–1025. [Google Scholar] [CrossRef]
- Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post–Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611–628. [Google Scholar] [CrossRef]
- Will, C.M.; Nordtvedt, J.K. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177, 757–774. [Google Scholar] [CrossRef]
- Schwartz, H.M. Einstein’s comprehensive 1907 essay on relativity, part III. Am. J. Phys. 1977, 45, 899–902. [Google Scholar] [CrossRef]
- Dicke, R.H. The Theoretical Significance of Experimental Relativity; Blackie and Son Ltd.: London/Glasgow, UK, 1964. [Google Scholar]
- Bertotti, B.; Brill, D.; Krotkov, R. Gravitation: An Introduction to Current Research; Wiley: Hoboken, NJ, USA, 1962. [Google Scholar]
- Whitrow, G.J.; Morduch, G.E. Relativistic theories of gravitation: A comparative analysis with particular reference to astronomical tests. Vistas Astron. 1965, 6, 1–67. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Thorne, K.S.; Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. I. Foundations. Astrophys. J. 1971, 163, 595. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. APJL 2017, 848, L12. [Google Scholar] [CrossRef]
- Will, C.M. Inaugural Article: On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics. Proc. Natl. Acad. Sci. USA 2011, 108, 5938–5945. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.; Anselmo, L.; Bassan, M.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE). Class. Quantum Grav. 2015, 32, 155012. [Google Scholar] [CrossRef]
- Visco, M.; Lucchesi, D.M. Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the LARASE program. Adv. Space Res. 2016, 57, 1928–1938. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R. On the secular decay of the LARES semi-major axis. Acta Astronaut. 2017, 140, 469–477. [Google Scholar] [CrossRef]
- Visco, M.; Lucchesi, D.M. Comprehensive model for the spin evolution of the LAGEOS and LARES satellites. Phys. Rev. D 2018, 98, 044034. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe 2019, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Pucacco, G.; Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Stanga, R.; Visco, M. Earth gravity field modeling and relativistic measurements with laser-ranged satellites and the LARASE research program. In Proceedings of the EGU Conference, Geophysical Research Abstracts, Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Pucacco, G.; Lucchesi, D.M. Tidal effects on the LAGEOS-LARES satellites and the LARASE program. Celest. Mech. Dyn. Astron. 2018, 130, 66. [Google Scholar] [CrossRef]
- Tapley, B.D.; Flechtner, F.; Bettadpur, S.V.; Watkins, M.M. The status and future prospect for GRACE after the first decade. In Proceedings of the Eos Transactions Fall Meeting Supplement Abstract G32A-01, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Cheng, M.; Ries, J.C. Decadal variation in Earth’s oblateness (J2) from satellite laser ranging data. Geophys. J. Int. 2018, 212, 1218–1224. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. An improved measurement of the Lense-Thirring precession on the orbits of laser-ranged satellites with an accuracy approaching the 1% level. arXiv 2019, arXiv:gr-qc/1910.01941, arXiv:gr–qc/191001941. [Google Scholar]
- Lucchesi, D.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites. Universe 2020, 6, 139. [Google Scholar] [CrossRef]
- Moffat, J.W. New theory of gravitation. Phys. Rev. D 1979, 19, 3554–3558. [Google Scholar] [CrossRef]
- Moffat, J.W.; Woolgar, E. Motion of massive bodies: Testing the nonsymmetric gravitation theory. Phys. Rev. D 1988, 37, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Hammond, R.T. Torsion gravity. Rep. Prog. Phys. 2002, 65, 599–649. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, D.; Anselmo, L.; Bassan, M.; Lucente, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing General Relativity vs. Alternative Theories of Gravitation with the SaToR-G Experiment. Phys. Sci. Forum 2021, 2, 52. https://doi.org/10.3390/ECU2021-09274
Lucchesi D, Anselmo L, Bassan M, Lucente M, Magnafico C, Pardini C, Peron R, Pucacco G, Visco M. Testing General Relativity vs. Alternative Theories of Gravitation with the SaToR-G Experiment. Physical Sciences Forum. 2021; 2(1):52. https://doi.org/10.3390/ECU2021-09274
Chicago/Turabian StyleLucchesi, David, Luciano Anselmo, Massimo Bassan, Marco Lucente, Carmelo Magnafico, Carmen Pardini, Roberto Peron, Giuseppe Pucacco, and Massimo Visco. 2021. "Testing General Relativity vs. Alternative Theories of Gravitation with the SaToR-G Experiment" Physical Sciences Forum 2, no. 1: 52. https://doi.org/10.3390/ECU2021-09274
APA StyleLucchesi, D., Anselmo, L., Bassan, M., Lucente, M., Magnafico, C., Pardini, C., Peron, R., Pucacco, G., & Visco, M. (2021). Testing General Relativity vs. Alternative Theories of Gravitation with the SaToR-G Experiment. Physical Sciences Forum, 2(1), 52. https://doi.org/10.3390/ECU2021-09274