New Black Hole Solutions in and Gauged Supergravity †
Abstract
1. Introduction
2. Results
2.1. The Model
2.1.1. Redefinitions
2.2. Hairy Black Hole Solutions
2.2.1. Family 1—Electric Solutions
Boundary Conditions, Mass and Thermodynamics for the Electric Solutions
2.2.2. Family 2—Magnetic Solutions
Boundary Conditions, Mass and Thermodynamics for the Magnetic Solutions
3. Discussion
3.1. Duality Relation between the Two Families of Solutions
3.2. Supersymmetric Solutions
3.2.1. Family 1
3.2.2. Family 2
3.3. BPS Black Holes of Finite Area
3.3.1. Family 1: BPS Electric Black Holes
- :
- in the flat case, the location of the horizon is very simple (see (61) above) and it follows that and , so we conclude that only exists;
- :
- in the hyperbolic case, always exists while the solution exists provided ;
- :
- for a spherical black hole, only exists, provided .
3.3.2. Family 2: BPS Magnetic Black Holes
3.4. Truncations
3.4.1. Uncharged Case
3.4.2. Charged Case
The Case
Acknowledgments
Conflicts of Interest
References
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999, 38, 1113–1133. [Google Scholar] [CrossRef]
- Hawking, S.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Charged AdS black holes and catastrophic holography. Phys. Rev. D 1999, 60, 064018. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 1999, 60, 104026. [Google Scholar] [CrossRef]
- Cvetic, M.; Gubser, S.S. Phases of R charged black holes, spinning branes and strongly coupled gauge theories. JHEP 1999, 4, 24. [Google Scholar] [CrossRef]
- Caldarelli, M.M.; Cognola, G.; Klemm, D. Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Class. Quant. Grav. 2000, 17, 399–420. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. 1996, B379, 99–104. [Google Scholar] [CrossRef]
- Cacciatori, S.L.; Klemm, D. Supersymmetric AdS(4) black holes and attractors. JHEP 2010, 1, 85. [Google Scholar] [CrossRef]
- Hristov, K.; Looyestijn, H.; Vandoren, S. BPS black holes in N = 2 D = 4 gauged supergravities. JHEP 2010, 8, 103. [Google Scholar] [CrossRef]
- Hristov, K.; Vandoren, S. Static supersymmetric black holes in AdS4 with spherical symmetry. JHEP 2011, 4, 47. [Google Scholar] [CrossRef][Green Version]
- Hristov, K.; Toldo, C.; Vandoren, S. On BPS bounds in D = 4 N = 2 gauged supergravity. JHEP 2011, 12, 14. [Google Scholar] [CrossRef]
- Toldo, C.; Vandoren, S. Static nonextremal AdS4 black hole solutions. JHEP 2012, 9, 48. [Google Scholar] [CrossRef]
- Chow, D.D.K.; Compère, G. Dyonic AdS black holes in maximal gauged supergravity. Phys. Rev. D 2014, 89, 065003. [Google Scholar] [CrossRef]
- Gnecchi, A.; Hristov, K.; Klemm, D.; Toldo, C.; Vaughan, O. Rotating black holes in 4d gauged supergravity. JHEP 2014, 1, 127. [Google Scholar] [CrossRef]
- Gnecchi, A.; Halmagyi, N. Supersymmetric black holes in AdS4 from very special geometry. JHEP 2014, 4, 173. [Google Scholar] [CrossRef]
- Lü, H.; Pang, Y.; Pope, C. An ω deformation of gauged STU supergravity. JHEP 2014, 4, 175. [Google Scholar] [CrossRef][Green Version]
- Faedo, F.; Klemm, D.; Nozawa, M. Hairy black holes in N = 2 gauged supergravity. JHEP 2015, 11, 45. [Google Scholar] [CrossRef]
- Klemm, D.; Marrani, A.; Petri, N.; Santoli, C. BPS black holes in a non-homogeneous deformation of the stu model of N = 2, D = 4 gauged supergravity. JHEP 2015, 9, 205. [Google Scholar] [CrossRef]
- Chimento, S.; Klemm, D.; Petri, N. Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets. JHEP 2015, 6, 150. [Google Scholar] [CrossRef][Green Version]
- Hristov, K.; Katmadas, S.; Toldo, C. Rotating attractors and BPS black holes in AdS4. JHEP 2019, 1, 199. [Google Scholar] [CrossRef]
- Daniele, N.; Faedo, F.; Klemm, D.; Ramírez, P.F. Rotating black holes in the FI-gauged N = 2, D = 4 model. JHEP 2019, 3, 151. [Google Scholar] [CrossRef]
- Anabalon, A.; Astefanesei, D.; Gallerati, A.; Trigiante, M. New non-extremal and BPS hairy black holes in gauged and supergravity. arXiv 2020, arXiv:hep-th/2012.09877. [Google Scholar]
- Anabalón, A.; Astefanesei, D.; Gallerati, A.; Trigiante, M. Hairy Black Holes and Duality in an Extended Supergravity Model. JHEP 2018, 4, 58. [Google Scholar] [CrossRef]
- Anabalón, A.; Astefanesei, D.; Choque, D.; Gallerati, A.; Trigiante, M. Exact holographic RG flows in extended SUGRA. arXiv 2020, arXiv:hep-th/2012.01289. [Google Scholar]
- Duff, M.J.; Liu, J.T.; Rahmfeld, J. Four-dimensional string-string-string triality. Nuclear Phys. B 1996, 459, 125–159. [Google Scholar] [CrossRef]
- Behrndt, K.; Kallosh, R.; Rahmfeld, J.; Shmakova, M.; Wong, W.K. STU black holes and string triality. Phys. Rev. D 1996, 54, 6293–6301. [Google Scholar] [CrossRef]
- Behrndt, K.; Lust, D.; Sabra, W.A. Stationary solutions of N = 2 supergravity. Nuclear Phys. B 1998, 510, 264–288. [Google Scholar] [CrossRef]
- Duff, M.; Liu, J.T. Anti-de Sitter black holes in gauged N = 8 supergravity. Nuclear Phys. B 1999, 554, 237–253. [Google Scholar] [CrossRef]
- Andrianopoli, L.; D’Auria, R.; Gallerati, A.; Trigiante, M. Extremal Limits of Rotating Black Holes. JHEP 2013, 1305, 71. [Google Scholar] [CrossRef][Green Version]
- Andrianopoli, L.; Gallerati, A.; Trigiante, M. On Extremal Limits and Duality Orbits of Stationary Black Holes. JHEP 2014, 1, 53. [Google Scholar] [CrossRef][Green Version]
- Henneaux, M.; Martinez, C.; Troncoso, R.; Zanelli, J. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields. Ann. Phys. 2007, 322, 824–848. [Google Scholar] [CrossRef]
- Anabalon, A.; Astefanesei, D.; Martinez, C. Mass of asymptotically anti–de Shairy spacetimes. Phys. Rev. 2015, D91, 041501. [Google Scholar] [CrossRef]
- Anabalon, A.; Astefanesei, D.; Choque, D.; Martinez, C. Trace Anomaly and Counterterms in Designer Gravity. JHEP 2016, 3, 117. [Google Scholar] [CrossRef]
- Trigiante, M. Gauged Supergravities. Phys. Rept. 2017, 680, 1–175. [Google Scholar] [CrossRef]
- Gallerati, A.; Trigiante, M. Introductory Lectures on Extended Supergravities and Gaugings. Springer Proc. Phys. 2016, 176, 41–109. [Google Scholar] [CrossRef]
- Gallerati, A. Constructing black hole solutions in supergravity theories. Int. J. Mod. Phys. 2020, A34, 1930017. [Google Scholar] [CrossRef]
- de Wit, B.; Nicolai, H. N = 8 Supergravity with Local SO(8) x SU(8) Invariance. Phys. Lett. B 1982, 108, 285. [Google Scholar] [CrossRef]
- de Wit, B.; Nicolai, H. N = 8 Supergravity. Nucl. Phys. B 1982, 208, 323. [Google Scholar] [CrossRef]
- Cvetic, M.; Gubser, S.; Lu, H.; Pope, C. Symmetric potentials of gauged supergravities in diverse dimensions and Coulomb branch of gauge theories. Phys. Rev. D 2000, 62, 086003. [Google Scholar] [CrossRef]
- Cvetic, M.; Lu, H.; Pope, C.; Sadrzadeh, A. Consistency of Kaluza-Klein sphere reductions of symmetric potentials. Phys. Rev. D 2000, 62, 046005. [Google Scholar] [CrossRef]
- de Wit, B.; Nicolai, H. Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions. JHEP 2013, 5, 77. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallerati, A.
New Black Hole Solutions in
Gallerati A.
New Black Hole Solutions in
Gallerati, Antonio.
2021. "New Black Hole Solutions in
Gallerati, A.
(2021). New Black Hole Solutions in