Behavior of Various Scalar Field Potentials under Tracking Parameters of Quintessence Class of Scalar Field Models †
Abstract
:1. Introduction
2. Mathematical Background
3. Results
- (a)
- Exponential form:
- (b)
- Power law form: and
- (c)
- Hyperbolic form [19]:
Analysis
- (a)
- V(φ) =For u = 0, Г = undefined; From (15), u = 1, Г = 1For positive and negative values of u, Г > 1.
- (b)
- V(φ) =For u = 0, Г is undefined. From (16), u = −1, Г > 1.For negative values of u, Г > 1.For positive values of u, Г < 1.
- (c)
- V(φ) =For u = 0, Г is undefined. From (17), u = 1, Г > 1.For negative values of u, Г < 1.For positive values of u, Г > 1.
- (d)
- V(φ) = =For u > 0,Similarly, as u > 0,
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Martin, J. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). C. R. Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar]
- Nojiri, S.; Bamba, K.; Capozziello, S.; Odinstov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar]
- Ratra, B.; Peebles, P.J. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, S. Quintessence: A review. Class. Quantum Gravity 2013, 30, 214003. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, R.R.; Linder, E.V. Limits of quintessence. Phys. Rev. Lett. 2005, 95, 141301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, T. Slow-roll thawing quintessence. Phys. Rev. D 2009, 79, 083517. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, R.J.; Sen, A.A. Thawing quintessence with a nearly flat potential. Phys. Rev. D 2008, 77, 083515. [Google Scholar] [CrossRef] [Green Version]
- Steinhardt, P.J.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [Google Scholar] [CrossRef] [Green Version]
- Johri, V.B. Search for tracker potentials in quintessence theory. Class. Quantum Gravity 2002, 19, 5959. [Google Scholar] [CrossRef] [Green Version]
- Johri, V.B. Constraints over cosmological constant and quintessence fields in an accelerating Universe. arXiv 2000, arXiv:astro-ph/0007079. [Google Scholar]
- Ford, L.H. Cosmological-constant damping by unstable scalar fields. Phys. Rev. D 1987, 35, 2339. [Google Scholar] [CrossRef] [PubMed]
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Scherrer, R.J. Hilltop quintessence. Phys. Rev. D 2008, 78, 123525. [Google Scholar] [CrossRef] [Green Version]
- De la Macorra, A.; Piccinelli, G. Cosmological evolution of general scalar fields and quintessence. Phys. Rev. D 2000, 61, 123503. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Shahalam, M.; Pal, B.; Pan, S.; Wang, A. Constraints on quintessence scalar field models using cosmological observations. Phys. Rev. D 2019, 100, 023522. [Google Scholar] [CrossRef] [Green Version]
S.No. | Potential (V(φ)) | Tracking Parameter (Г) | Value of ‘u’ (u R) |
1. | Г = 1 | 1 | |
2. | Г > 1 | −1 | |
3. | Г > 1 | 1 | |
4. | Г < 1 | For all positive and negative values of u. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, T. Behavior of Various Scalar Field Potentials under Tracking Parameters of Quintessence Class of Scalar Field Models. Phys. Sci. Forum 2021, 2, 39. https://doi.org/10.3390/ECU2021-09299
Joshi T. Behavior of Various Scalar Field Potentials under Tracking Parameters of Quintessence Class of Scalar Field Models. Physical Sciences Forum. 2021; 2(1):39. https://doi.org/10.3390/ECU2021-09299
Chicago/Turabian StyleJoshi, Tanisha. 2021. "Behavior of Various Scalar Field Potentials under Tracking Parameters of Quintessence Class of Scalar Field Models" Physical Sciences Forum 2, no. 1: 39. https://doi.org/10.3390/ECU2021-09299
APA StyleJoshi, T. (2021). Behavior of Various Scalar Field Potentials under Tracking Parameters of Quintessence Class of Scalar Field Models. Physical Sciences Forum, 2(1), 39. https://doi.org/10.3390/ECU2021-09299