Dynamics of Disk and Elliptical Galaxies in Refracted Gravity †
Abstract
:1. Introduction
- Being DMS galaxies close to face-on, both their rotation curves and their vertical velocity dispersion profiles are available, and modeling two kinematic profiles at the same time, rather than the rotation curves alone, provides a more stringent constrain for RG;
- Having ellipticities between 0.85 and 1 [6], E0 galaxies can be approximated as spherical systems, and they are ideal to test whether RG can model the dynamics of galaxies with this morphology. The kinematics of the galaxies in the SLUGGS survey is probed up to 10 effective radii from their centers, thanks to the detection of two populations of globular clusters (GCs), one blue and one red. Constraining the properties of RG from such extended kinematic profiles of two distinct populations provides again a very stringent test for RG.
2. Experiments and Results
2.1. Disk Galaxies
2.1.1. Mass Model
2.1.2. Rotation Curves
2.1.3. Rotation Curves and Vertical Velocity Dispersion Profiles
2.1.4. A Unique Combination of RG Parameters
2.1.5. The Radial Acceleration Relation
2.2. Elliptical Galaxies
2.2.1. Kinematic Model
2.2.2. Results
3. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Matsakos, T.; Diaferio, A. Dynamics of galaxies and clusters in refracted gravity. arXiv 2016, arXiv:1603.04943. [Google Scholar]
- Cesare, V.; Diaferio, A.; Matsakos, T.; Angus, G. Dynamics of DiskMass Survey galaxies in refracted gravity. Astron. Astrophys. 2020, 637, A70. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics: Implications for galaxies. Astrophys. J. 1983, 270, 371–383. [Google Scholar] [CrossRef]
- Bershady, M.A.; Verheijen, M.A.W.; Swaters, R.A.; Andersen, D.R.; Westfall, K.B.; Martinsson, T. The DiskMass Survey. I. Overview. Astrophys. J. 2010, 716, 198. [Google Scholar] [CrossRef] [Green Version]
- Pota, V.; Forbes, D.A.; Romanowsky, A.J.; Brodie, J.P.; Spitler, L.R.; Strader, J.; Foster, C.; Arnold, J.A.; Benson, A.; Blom, C.; et al. The SLUGGS Survey: Kinematics for over 2500 globular clusters in 12 early-type galaxies. Mon. Not. R. Astron. Soc. 2013, 428, 389. [Google Scholar] [CrossRef]
- Sancisi, R. The visible matter-dark matter coupling. In Symposium—International Astronomical Union, Volume 220: Dark Matter in Galaxies; Ryder, S., Pisano, D., Walker, M., Freeman, K., Eds.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bell, E.F.; de Jong, R.S. Stellar mass-to-light ratios and the Tully-Fisher relation. Astrophys. J. 2001, 550, 212. [Google Scholar] [CrossRef]
- Martinsson, T.P.K.; Verheijen, M.A.W.; Westfall, K.B.; Bershady, M.A.; Schechtman-Rook, A.; Andersen, D.R.; Swaters, R.A. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy. Astron. Astrophys. 2013, 557, A130. [Google Scholar] [CrossRef] [Green Version]
- Bershady, M.A.; Verheijen, M.A.W.; Westfall, K.B.; Andersen, D.R.; Swaters, R.A.; Martinsson, T. The DiskMass Survey. II. Error budget. Astrophys. J. 2010, 716, 234. [Google Scholar] [CrossRef]
- Angus, G.W.; Gentile, G.; Swaters, R.; Famaey, B.; Diaferio, A.; McGaugh, S.S.; van der Heyden, K.J. Mass models of disk galaxies from the DiskMass Survey in MOND. Mon. Not. R. Astron. Soc. 2015, 451, 3551. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. Quasi-linear formulation of MOND. Mon. Not. R. Astron. Soc. 2010, 403, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Milgrom, M. Critical take on “Mass models of disk galaxies from the DiskMass Survey in MOND”. arXiv 2015, arXiv:1511.08087. [Google Scholar]
- Aniyan, S.; Freeman, K.C.; Gerhard, O.E.; Arnaboldi, M.; Flynn, C. The Influence of a Kinematically Cold Young Component on Disc-Halo Decompositions in Spiral Galaxies: Insight from Solar Neighbourhood K-giants. Mon. Not. R. Astron. Soc. 2016, 456, 1484. [Google Scholar] [CrossRef] [Green Version]
- Cesare, V.; Colonnelli, I.; Aldinucci, M. Practical Parallelization of Scientific Applications. In Proceedings of the 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Vasteras, Sweden, 11–13 March 2020; pp. 376–384. [Google Scholar]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. Astron. J. 2016, 152, 157. [Google Scholar] [CrossRef] [Green Version]
- McGaugh, S.S.; Lelli, F.; Schombert, J.M. The Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lelli, F.; McGaugh, S.; Schombert, J.M. Fitting the radial acceleration relation to individual SPARC galaxies. Astron. Astrophys. 2018, 615, A3. [Google Scholar] [CrossRef] [Green Version]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef] [Green Version]
- Mamon, G.A.; Łokas, E.L. Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. Mon. Not. R. Astron. Soc. 2005, 363, 705–722. [Google Scholar] [CrossRef] [Green Version]
- Cappellari, M. Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics. Mon. Not. R. Astron. Soc. 2008, 390, 71–86. [Google Scholar] [CrossRef]
- Scott, N.; Cappellari, M.; Davies, R.L.; Kleijn, G.V.; Bois, M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Crocker, A.; et al. The ATLAS3D project—XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies. Mon. Not. R. Astron. Soc. 2013, 432, 1894–1913. [Google Scholar] [CrossRef] [Green Version]
- Pota, V.; Romanowsky, A.J.; Brodie, J.P.; Peñarrubia, J.; Forbes, D.A.; Napolitano, N.R.; Foster, C.; Walker, M.G.; Strader, J.; Roediger, J.C. The SLUGGS survey: Multipopulation dynamical modelling of the elliptical galaxy NGC 1407 from stars and globular clusters. Mon. Not. R. Astron. Soc. 2015, 450, 3345–3358. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesare, V. Dynamics of Disk and Elliptical Galaxies in Refracted Gravity. Phys. Sci. Forum 2021, 2, 34. https://doi.org/10.3390/ECU2021-09292
Cesare V. Dynamics of Disk and Elliptical Galaxies in Refracted Gravity. Physical Sciences Forum. 2021; 2(1):34. https://doi.org/10.3390/ECU2021-09292
Chicago/Turabian StyleCesare, Valentina. 2021. "Dynamics of Disk and Elliptical Galaxies in Refracted Gravity" Physical Sciences Forum 2, no. 1: 34. https://doi.org/10.3390/ECU2021-09292
APA StyleCesare, V. (2021). Dynamics of Disk and Elliptical Galaxies in Refracted Gravity. Physical Sciences Forum, 2(1), 34. https://doi.org/10.3390/ECU2021-09292