Nested Sampling for Exploring Lennard-Jones Clusters †
Abstract
1. Introduction
2. Nested Sampling for Lennard-Jones Clusters
- K points, called live points, are uniformly sampled from the entire space.
- At each iteration i, the point associated to the highest energy is removed and replaced by a point with an energy that is strictly lower: . The method to find this new point will be presented in Section 2.1. Denoting , this point will contribute to the partition function asThe term is the approximation of the density of states (DOS) that is evaluated by statistical considerations.
- This procedure is repeated until the current contribution is small compared to previous contributions: with at an inverse temperature chosen by the user. Here, we use , the value used in Ref. [14] that gave good results for the harmonic potential.
2.1. Slice Sampling Real and Slice Sampling Transformed
- First, the steps can be performed in the transformed space. This will be referred to as slice sampling transformed and was used in Ref. [14]. However, the sampled points need to be transformed back to the real space to compute the energy and check that the points are within the bounds. This brings a significant computational overhead to the computation.
2.2. Parallelisation
- If the energy is lower than , the point is added to the live points, is removed and is updated to the new maximum energy of the set of live points. The new value will be used for new points not yet added or rejected.
- If the energy is higher than , the new point is rejected and is not updated.
2.3. Computing the Covariance Matrix
3. Lennard-Jones Clusters
3.1. Seven Atoms
3.2. Thirty-Six Atoms
4. Program Profiling and Optimisation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt- Rinehart and Winston: New York, NY, USA, 1976. [Google Scholar]
- Doye, J.P.K.; Miller, M.A.; Wales, D.J. Evolution of the potential energy surface with size for Lennard-Jones clusters. J. Chem. Phys. 1999, 111, 8417–8428. [Google Scholar] [CrossRef]
- Wales, D.J.; Doye, J.P.K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. Chem. 1997, 101, 5111–5116. [Google Scholar] [CrossRef]
- Quirke, N.; Sheng, P. The melting behavior of small clusters of atoms. Chem. Phys. Lett. 1984, 110, 63–66. [Google Scholar] [CrossRef]
- Beck, T.L.; Berry, R.S. The interplay of structure and dynamics in the melting of small clusters. J. Chem. Phys. 1988, 88, 3910–3922. [Google Scholar] [CrossRef]
- Neirotti, J.P.; Calvo, F.; Freeman, D.L.; Doll, J.D. Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble. J. Chem. Phys. 2000, 112, 10340–10349. [Google Scholar] [CrossRef]
- Calvo, F.; Neirotti, J.P.; Freeman, D.L.; Doll, J.D. Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles. J. Chem. Phys. 2000, 112, 10350–10357. [Google Scholar] [CrossRef]
- Skilling, J. Nested Sampling. AIP Conf. Proc. 2004, 735, 395–405. [Google Scholar] [CrossRef]
- Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Fowlie, A.; Feroz, F.; Griffiths, M.; Handley, W.; Habeck, M.; et al. Nested sampling for physical scientists. Nat. Rev. Methods Prim. 2022, 2, 39. [Google Scholar] [CrossRef]
- Pártay, L.B.; Bartók, A.P.; Csányi, G. Efficient Sampling of Atomic Configurational Spaces. J. Phys. Chem. 2010, 114, 10502–10512. [Google Scholar] [CrossRef]
- Trassinelli, M. The Nested_fit Data Analysis Program. Proceedings 2019, 33, 14. [Google Scholar] [CrossRef]
- Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instruments Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2017, 408, 301–312. [Google Scholar] [CrossRef]
- Trassinelli, M.; Ciccodicola, P. Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm. Entropy 2020, 22, 185. [Google Scholar] [CrossRef] [PubMed]
- Maillard, L.; Finocchi, F.; Trassinelli, M. Assessing Search and Unsupervised Clustering Algorithms in Nested Sampling. Entropy 2023, 25, 347. [Google Scholar] [CrossRef]
- Shi, W.; Johnson, J. Histogram reweighting and finite-size scaling study of the Lennard–Jones fluids. Fluid Phase Equilibria 2001, 187-188, 171–191. [Google Scholar] [CrossRef]
- Pártay, L.B.; Ortner, C.; Bartók, A.P.; Pickard, C.J.; Csányi, G. Polytypism in the ground state structure of the Lennard-Jonesium. Phys. Chem. Chem. Phys. 2017, 19, 19369–19376. [Google Scholar] [CrossRef]
- Pártay, L.B.; Csányi, G.; Bernstein, N. Nested sampling for materials. Eur. Phys. J. 2021, 94, 159. [Google Scholar] [CrossRef]
- Neal, R.M. Slice sampling. Ann. Stat. 2003, 31, 705–767. [Google Scholar] [CrossRef]
- Handley, W.J.; Hobson, M.P.; Lasenby, A.N. PolyChord: Nested sampling for cosmology. Mon. Not. R. Astron. Soc. Lett. 2015, 450, L61–L65. [Google Scholar] [CrossRef]
- Handley, W.J.; Hobson, M.P.; Lasenby, A.N. polychord: Next-generation nested sampling. Mon. Not. R. Astron. Soc. 2015, 453, 4385–4399. [Google Scholar] [CrossRef]
- Henderson, R.W.; Goggans, P.M. Parallelized nested sampling. Aip Conf. Proc. 2014, 1636, 100–105. [Google Scholar] [CrossRef]
- Hüller, A. First order phase transitions in the canonical and the microcanonical ensemble. Z. FüR Phys. Condens. Matter 1994, 93, 401–405. [Google Scholar] [CrossRef]
- Medved’, I.; Trník, A.; Vozár, L. Modeling of heat capacity peaks and enthalpy jumps of phase-change materials used for thermal energy storage. Int. J. Heat Mass Transf. 2017, 107, 123–132. [Google Scholar] [CrossRef]
- Baldock, R.J.N.; Bernstein, N.; Salerno, K.M.; Pártay, L.B.; Csányi, G. Constant-pressure nested sampling with atomistic dynamics. Phys. Rev. E 2017, 96, 043311. [Google Scholar] [CrossRef]
- Baldock, R.J.N.; Pártay, L.B.; Bartók, A.P.; Payne, M.C.; Csányi, G. Determining pressure-temperature phase diagrams of materials. Phys. Rev. B 2016, 93, 174108. [Google Scholar] [CrossRef]
- Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 1999, 17, 176–179. [Google Scholar] [CrossRef]
- Mandelshtam, V.A.; Frantsuzov, P.A. Multiple structural transformations in Lennard-Jones clusters: Generic versus size-specific behavior. J. Chem. Phys. 2006, 124, 204511. [Google Scholar] [CrossRef] [PubMed]
- Frantsuzov, P.A.; Mandelshtam, V.A. Size-temperature phase diagram for small Lennard-Jones clusters. Phys. Rev. E 2005, 72, 037102. [Google Scholar] [CrossRef]
- Armour-Brown, C.; Borntraeger, C.; Fitzhardinge, J.; Floyd, P.; Hughes, T.; Jovanovic, P.; Jevtic, D.; Krohm, F.; Johnson, M.; Love, C.; et al. Valgrind. Available online: https://valgrind.org/ (accessed on 17 June 2025).
- Nethercote, N.; Seward, J. Valgrind: A framework for heavyweight dynamic binary instrumentation. Acm Sigplan Not. 2007, 42, 89–100. [Google Scholar] [CrossRef]
- Fonseca, J. gprof2dot. Available online: https://github.com/jrfonseca/gprof2dot (accessed on 17 June 2025).
_mod_search_new_point_MOD_slice_sampling |
Performs one iteration of nested sampling with slice sampling real |
_mod_search_new_point_MOD_slice_sampling_transf |
Performs one iteration of nested sampling with slice sampling transformed |
_mod_likelihood_MOD_loglikelihood |
Calls the function to calculate (here the Lennard-Jones potential) |
_mod_search_new_point_MOD_mat_cov |
Computes the covariance matrix |
_mod_search_new_point_MOD_base_o_n |
Creates an orthonormal basis |
_mod_search_new_point_MOD_part_like_sub |
Calculates the function for a point in the transformed space |
_mod_search_new_point_MOD_test_bnd_sub |
Checks if a point in the transformed space is inside the sampling space |
Version 4.5.5-Slice | Version 4.6.0-Slice | Version 4.6.0-Slice | |
sampling transformed | sampling transformed | sampling real | |
Time (s) | 442.19 | 367.57 | 158.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maillard, L.; Finocchi, F.; Godinho, C.; Trassinelli, M. Nested Sampling for Exploring Lennard-Jones Clusters. Phys. Sci. Forum 2025, 12, 8. https://doi.org/10.3390/psf2025012008
Maillard L, Finocchi F, Godinho C, Trassinelli M. Nested Sampling for Exploring Lennard-Jones Clusters. Physical Sciences Forum. 2025; 12(1):8. https://doi.org/10.3390/psf2025012008
Chicago/Turabian StyleMaillard, Lune, Fabio Finocchi, César Godinho, and Martino Trassinelli. 2025. "Nested Sampling for Exploring Lennard-Jones Clusters" Physical Sciences Forum 12, no. 1: 8. https://doi.org/10.3390/psf2025012008
APA StyleMaillard, L., Finocchi, F., Godinho, C., & Trassinelli, M. (2025). Nested Sampling for Exploring Lennard-Jones Clusters. Physical Sciences Forum, 12(1), 8. https://doi.org/10.3390/psf2025012008