Croatian Traditional Apple Varieties: Why Are They More Resistant to Plant Diseases? †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lo Piccolo, E.; Landi, M.; Massai, R.; Remorini, D.; Conte, G.; Guidi, L. Ancient apple varieties from Garfagnana (Tuscany, Italy): A potential source for ‘nutrafruit’ production. Food Chem. 2019, 294, 518–525. [Google Scholar] [CrossRef]
- Jakobek, L.; Barron, A.R. Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J. Food Compos. Anal. 2016, 45, 9–15. [Google Scholar] [CrossRef]
- Mayr, U.; Michalek, S.; Treutter, D.; Feucht, W. Phenolic Compounds of Apple and their Relationship to Scab Resistance. J. Phytopathol. 1997, 145, 69–75. [Google Scholar] [CrossRef]
- Skłodowska, M.; Mikiciński, A.; Wielanek, M.; Kuźniak, E.; Sobiczewski, P. Phenolic profiles in apple leaves and the efficacy of selected phenols against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 2017, 151, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Lončarić, A.; Matanović, K.; Ferrer, P.; Kovač, T.; Šarkanj, B.; Skendrović Babojelić, M.; Lores, M. Peel of Traditional Apple Varieties as a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion. Foods 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kschonsek, J.; Wiegand, C.; Hipler, U.-C.; Böhm, V. Influence of polyphenolic content on the in vitro allergenicity of old and new apple varieties: A pilot study. Nutrition 2019, 58, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Parrilla, E.; La Rosa, L.A.D.; Torres-Rivas, F.; Rodrigo-Garcia, J.; González-Aguilar, G.A. Complexation of Apple Antioxidants: Chlorogenic Acid, Quercetin and Rutin by β-Cyclodextrin (β-CD). J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 121–129. [Google Scholar] [CrossRef]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Shim, S.-H.; Jo, S.-J.; Kim, J.-C.; Choi, G.-J. Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases. Plant Pathol. J. 2010, 26, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.; Manfredini, S.; Vertuani, S. Synthesis, Antioxidant and Antimicrobial Activity of a New Phloridzin Derivative for Dermo-Cosmetic Applications. Molecules 2012, 17, 13275–13289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. Phenolic compounds in apple leaves after infection with apple scab. Biol. Plant. 2011, 55, 725–730. [Google Scholar] [CrossRef]
- Picinelli, A.; Dapena, E.; Mangas, J.J. Polyphenolic Pattern in Apple Tree Leaves in Relation to Scab Resistance. A Preliminary Study. J. Agric. Food Chem. 1995, 43, 2273–2278. [Google Scholar] [CrossRef] [Green Version]
- Brett, A.M.O.; Ghica, M.-E. Electrochemical Oxidation of Quercetin. Electroanalysis 2003, 15, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Sanzani, S.M.; De Girolamo, A.; Schena, L.; Solfrizzo, M.; Ippolito, A.; Visconti, A. Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone. Eur. Food Res. Technol. 2009, 228, 381–389. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed]
Apple Variety | Chlorogenic Acid | Phloridzin | Quercetin |
---|---|---|---|
[mg/100 g dw] | |||
“Petrovnjača” | 14.29 ± 0.16 | 1.02 ± 0.01 | 11.68 ± 0.09 |
“Kleker” | 11.31 ± 0.17 | 1.22 ± 0.02 | 7.44 ± 0.19 |
“Mašanka” | 16.58 ± 0.14 | 3.12 ± 0.01 | 9.53 ± 0.12 |
“Amovka” | 11.94 ± 0.22 | 0.4 ± 0.01 | 7.31 ± 0.09 |
“Srčika” | 17.16 ± 0.13 | 1.61 ± 0.02 | 9.74 ± 0.23 |
“Paradija” | 23.83 ± 0.47 | 0.85 ± 0.01 | 9.58 ± 0.06 |
“Kanada” | 12.34 ± 0.11 | 0.99 ± 0 | 3.22 ± 0.03 |
“Božičnica” | 30.29 ± 0.34 | 0.77 ± 0 | 3.39 ± 0.35 |
“Ivandija” | 12.59 ± 0.17 | 1.1 ± 0.01 | 3.02 ± 0.04 |
“Šampanjka” | 12.39 ± 0.39 | 0.26 ± 0.01 | 0.82 ± 0.28 |
Apple Variety | Chlorogenic Acid | Phloridzin | Quercetin |
---|---|---|---|
[mg/100 g dw] | |||
"Granny Smith” | 13.57 ± 0.19 | 0.57 ± 0.01 | 1.19 ± 0.04 |
“Idared” | 7.9 ± 0.11 | 1.22 ± 0.01 | 2.9 ± 0.05 |
“Golden Delicious” | 4.34 ± 0.19 | 0.4 ± 0 | 3.34 ± 0.13 |
“Jonagold” | 5.56 ± 0.17 | 0.71 ± 0 | 1.69 ± 0.05 |
“Fuji” | 6.62 ± 0.2 | 0.39 ± 0 | 2.89 ± 0.03 |
Apple Variety | Total Phenolic Acids | Total Dihydrochalcones | Total Flavonols |
---|---|---|---|
[mg/100 g dw] | |||
“Granny Smith” | 14.2359 | 0.142359 | 9.314 |
“Idared” | 8.5623 | 0.085623 | 11.271 |
“Golden Delicious” | 4.7792 | 0.047792 | 13.303 |
“Jonagold” | 6.137 | 0.06137 | 9.776 |
“Fuji” | 6.9878 | 0.069878 | 19.11 |
Apple Variety | Total Phenolic Acids | Total Dihydrochalcones | Total Flavonols |
---|---|---|---|
[mg/100 g dw] | |||
“Petrovnjača” | 15.1524 | 1.198 | 12.4689 |
“Kleker” | 11.8933 | 1.4164 | 8.2163 |
“Mašanka” | 16.8465 | 3.5233 | 10.1015 |
“Amovka” | 12.3333 | 0.5687 | 7.8828 |
“Srčika” | 18.2125 | 1.8212 | 5.6331 |
“Paradija” | 24.4576 | 1.0721 | 10.3979 |
“Kanada” | 16.4103 | 1.1875 | 9.423 |
“Božičnica” | 31.9373 | 0.8888 | 7.638 |
“Ivandija” | 13.6652 | 1.3662 | 8.753 |
“Šampanjka” | 13.9938 | 0.3757 | 4.495 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lončarić, A.; Kovač, T.; Gotal, A.-M.; Celeiro, M.; Lores, M. Croatian Traditional Apple Varieties: Why Are They More Resistant to Plant Diseases? Biol. Life Sci. Forum 2021, 6, 21. https://doi.org/10.3390/Foods2021-10917
Lončarić A, Kovač T, Gotal A-M, Celeiro M, Lores M. Croatian Traditional Apple Varieties: Why Are They More Resistant to Plant Diseases? Biology and Life Sciences Forum. 2021; 6(1):21. https://doi.org/10.3390/Foods2021-10917
Chicago/Turabian StyleLončarić, Ante, Tihomir Kovač, Ana-Marija Gotal, Maria Celeiro, and Marta Lores. 2021. "Croatian Traditional Apple Varieties: Why Are They More Resistant to Plant Diseases?" Biology and Life Sciences Forum 6, no. 1: 21. https://doi.org/10.3390/Foods2021-10917
APA StyleLončarić, A., Kovač, T., Gotal, A. -M., Celeiro, M., & Lores, M. (2021). Croatian Traditional Apple Varieties: Why Are They More Resistant to Plant Diseases? Biology and Life Sciences Forum, 6(1), 21. https://doi.org/10.3390/Foods2021-10917